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Abstract

We investigate the six operations in the context of relative algebraic geometry. As an ap-
plication, we obtain a theory of derived rigid geometry, which is shown to have applications
to the theory of ÙD-modules of Ardakov and Wadsley.
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Chapter 1

Introduction

1.1 Philosophical discussion

The purpose of this thesis is to illustrate the following: that (derived) analytic and al-
gebraic geometry, two subjects one might have thought to be disjoint, can be handled
on an equal footing. That is, they are both instances of relative algebraic geometry. My
hope is that, by the end of this thesis, the reader will appreciate the usefulness of this
perspective, which has been introduced by Bambozzi, Ben-Bassat, Kelly, and Kremnizer,
and which also appears in the work of Clausen–Scholze [BBK17, BBB16, CS19b]. The
following discussion is merely my attempt to explain their insights.

In algebra, we study rings and modules. To rephrase this in a slightly pretentious
way, we are studying monoids in the monoidal category Ab of abelian groups, and mod-
ules over them. Therefore, idea of relative algebraic geometry (following Toën–Vezzosi
[TV08], Toën–Vaquié [TV09] and Deligne [Del90]) is to replace Ab by some other sym-
metric monoidal category V .

With a judicious choice of such V , we will be doing “analysis”. A näıve guess would
have one taking V to be some kind of category of locally-convex vector spaces. It is possible
that the development of locally-convex vector spaces was something of a historical wrong
turn, because of their bad algebraic and homological properties. For instance, they are
not closed-symmetric monoidal, so one could spend ages wondering if a certain colimit
commutes with a tensor product, et cetera. To an algebraist, these pathologies are an
enormous headache, and they are fatal for the theory of locally-convex vector spaces.

Rather, the work of Ben-Bassat–Kelly–Kremnizer tells us which V to choose. Let
us take the following as an axiom: there is nothing wrong with the category of Banach
spaces, besides the fact that it only has finite limits and colimits. Indeed, Banach spaces
have a closed monoidal structure, they are quasi-abelian (I will say more about this in a
bit), and they have enough projectives, so they are a pretty good setting to do algebra.

To add these missing (co)limits in, we can take some kind of completion of the category.
The question is which one to take. The insight of the above-mentioned authors, is that
one should take an Ind-completion, whence it is totally obvious that one gets a closed
symmetric monoidal category, by Ind-extending the tensor product.

If you think about it, the category of (complete) locally-convex vector spaces is like a
Pro-completion of Banach spaces. In the same way that locally-convex vector spaces can
be described as a a vector space equipped with a notion of “convex open subsets”, complete
bornological spaces (which are equivalent to monomorphic Ind-systems of Banach spaces),
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can be described as vector spaces with a notion of bounded subsets, satisfying a number
of obvious properties. The theory of bornological spaces has a long history, going back to
Mackey [Mac45], Waelbroeck [Wae67], Hogbe-Nlend [HN70, HN71], Houzel [Hou72], and
more. In fact, the definition appears in Bourbaki [Bou81, Chapter III, §1].

Now let me explain why it is so critically important to “go derived” if we truly want
analytic geometry to be on the same footing as algebraic geometry. From a module
theorist’s perspective, the most important notion in algebraic geometry is that of a quasi-
coherent sheaf. In some sense, they are the dictionary between algebra and geometry.
Their utility lies in the fact that they are local on the scheme X, which one can reinterpet
as saying that QCoh is a sheaf of categories.

It is well-known due to the example of Gabber [Con06, Example 2.1.6] that the näıve
definition of a quasi-coherent sheaf cannot satisfy descent in the analytic topology. The
inherent pathology is the failure of flatness of localizations, with respect to the completed
tensor product. To fix this, for our theory of quasicoherent sheaves we will need to glue
categories of complexes of modules along derived localizations. However, mapping cones
in triangulated categories fail to be functorial in general and so one cannot, for instance,
define a “glued sheaf” along two open subsets to be the “fiber of the two restriction
morphisms”. This necessitates the introduction of higher algebra; instead of triangulated
categories, we use stable ∞-categories. Now we can state “ansatz” which informs this
work in a slightly more precise way:

Derived analytic geometry is algebraic geometry relative to V = D(CBornR).

Here the D(CBornR) stands for the derived category of complete bornological R-modules,
for some Banach ring1 R, or rather its obvious ∞-categorical enhancement.

One might object and point out that CBornR is not an abelian category. The ob-
servation of Schneiders and Prosmans [Sch99, PS00a, Pro95] was that this is still a very
special kind of exact category known as a quasi-abelian category, amenable to homological
algebra. Further, in [Kel24], Kelly produced a projective model structure on unbounded
chain complexes valued in certain exact categories. The combined work of Schneiders,
Prosmans and Kelly solves the problem of how to do homotopical algebra in quasi-abelian
categories2.

Working with ∞-categories turns out to be an enormous advantage for a number of
other reasons. For instance, we gain access to the powerful machinery of stable and
presentable ∞-categories, the Barr–Beck–Lurie monadicity theorem, the theory of de-
scendable algebras, Fourier–Mukai transforms (the list goes on). Because the language
of ∞-categories is so uniform, there is a remarkable conservation of difficulty. Thanks to
the breakthrough works of Liu–Zheng [LZ17], Gaitsgory–Rozenblyum [GR17], and Mann
[Man22], a full six-functor formalism can be implemented with ease. In keeping with
the above philosophy, most of these constructions work in the generality of relative alge-
braic geometry, and we get the corresponding constructions in analytic geometry just by
specialising to the case when V = D(CBornR).

Relation to condensed mathematics. As mentioned above, our functional analysis is
based on bornological spaces. An alternative approach would have us use the condensed

1We remark that the initial object in the category of Banach rings is (Z, | · |∞), or (Z, | · |triv) in
the category of non-Archimedean Banach rings. This raises the rather exciting possibility of a theory of
“global analytic geometry”, which includes the Archimedean place.

2A common misconception about this theory, is that one has to work with the abelian envelope when
doing homological algebra, in effect losing some of the concreteness of the theory. Thanks to the existence
of the model structures, this is not true.
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mathematics of Clausen and Scholze [CS19a]. My understanding is that the thesis of
Stempfhuber [Ste25] establishes a precise relation between the two theories.

1.2 What is done in Chapter 2.

Here is the organization of my thesis, and my results.

§2.1: Homotopical algebra in quasi-abelian categories. In this section we review
the methods established in [Sch99] and [Kel24].

In §2.1.1 we establish our conventions on bornological spaces and recall various cate-
gorical and functional-analytic facts.

In §2.1.2 we collect various properties of the derived category D(A ) of a quasi-abelian
category A , generalizing the corresponding results in the case when A is abelian. These
results may be well-known, but we find it convenient to have them written in one place,
and using arguments which work in the appropriate generality, i.e., do not delve into the
details of chain-complexes. Under the appropriate hypotheses, c.f. §2.1.2, we prove the
following:

⋆ We characterise D⩽0(A ) as the free sifted cocompletion on a generating family of
compact projectives (Corollary 2.1.39(i)).

⋆ We collect various universal properties of D⩽0(A ) and D(A ) (Corollary 2.1.39(ii)
and Proposition 2.1.50). These essentially follow from the above and the formula
D⩽0(A )⊗ Sp ≃ D(A ) (Lemma 2.1.48).

⋆ We prove that D⩽0(A ) and D(A ) are compactly generated and we give a description
of the compact objects as “P-perfect complexes” (Proposition 2.1.44 and Proposi-
tion 2.1.49)3.

In §2.1.3 we investigate the monoidal structure on D⩽0(A ), in the case when A is closed
symmetric monoidal. Under appropriate hypotheses, c.f. §2.1.3, we prove that:

⋆ The monoidal structure on D⩽0(A ) agrees with the Day convolution monoidal struc-
ture on the sifted cocompletion (Corollary 2.1.56).

⋆ Using this we formulate universal properties for D⩽0(A ) and D(A ) as monoidal
∞-categories (Corollary 2.1.56 and Proposition 2.1.57).

§2.2: Monads and descent. In order to formulate and prove the results in the appro-
priate generality, we decided to include this in a separate section.

In §2.2.1 we recall the definition of a homotopy-coherent monad acting on an ∞-
category, together with a module over it, and the statement of the Barr–Beck–Lurie
monadicity theorem.

In §2.2.2 we bootstrap the theorem of Barr–Beck–Lurie, to obtain a version which
works in families. That is, we prove a version of Barr–Beck–Lurie which works for relative
adjunctions between coCartesian fibrations (Proposition 2.2.5). This generalizes the result
of [GHK22, Proposition 4.4.5]; it is possible that the hypotheses in Proposition 2.2.5 are
optimal. By straightening, we obtain a “parametrized monadicity theorem” (Corollary
2.2.7).

3It is quite curious that, when we take A = CBornK , then certain computations in functional analysis
boil down to this categorical property of compact generation: see for instance the proof of Lemma 3.2.38.
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In §2.2.3 we formulate and prove a mild generalization of Mathew’s theorem on de-
scendable algebras [Mat16, §3.3] to the noncommutative setting.

In §2.2.4 we investigate the relation between monoids and monads. One might think
that this question answered by the theory of Fourier–Mukai transforms (see §2.3.3), how-
ever, in the course of this thesis we will encounter functors which are not linear but only lax
linear, and we still want to relate them to functors given by “tensoring with a bimodule”.
Here is the main result of §2.2.4:

Theorem 1.2.1 (= Corollary 2.2.22). Let V be a monoidal ∞-category and let A ∈
Alg(V ) be an algebra object in V . There is an adjunction

ι : A BModA V ⇆ Funlax
V (RModA V ,RModA V ) : κ (1.1)

in which the left adjoint ι is strongly monoidal (for convolution on the left, and composition
on the right). Here the superscript “ lax” denotes the lax V -linear functors.

In particular the right adjoint κ is lax-monoidal. The intended application is the
following. Suppose we are given a monad T belonging to the right-hand side of (1.1),
meaning that its underlying endofunctor is lax V -linear (such arises quite naturally from
adjunctions in which the left adjoint is V -linear). Then, according to the Theorem,
T (A) becomes an algebra object under convolution, and the counit ικ → id furnishes a
morphism of monads

T (A)⊗A (−)→ T (−), (1.2)

which one might call the “best linear approximation”.4 Thus, the problem of relating
modules over the monad T to modules over the algebra T (A) reduces to understanding
“fixed points”: that is, those objects where the natural transformation (1.2) resticts to an
an equivalence. We will apply this method in the context of analytic D-modules in §3.2.6.

§2.3: Theory of abstract six-functor formalisms. It is very convenient for a num-
ber of reasons to construct a six-functor formalism. The idea of a six-functor formalism is
that we start with some ∞-category C of geometric objects X, admitting all fiber prod-
ucts, and associate to each X ∈ C a closed symmetric monoidal ∞-category (Q(X),⊗)
in a manner which satisfies an enormous number of functorial properties. That is, to
each morphism f of C we associate a pullback and a pushforward functor, and for mor-
phisms in a certain special class E we associate a compactly supported pushforward and
an exceptional pullback. These assignments should all be compatible with composition,
and satisfy the base-change and projection formulas5. In recent years, due to the break-
through works of Liu–Zheng [LZ17], Gaitsgory–Rozenblyum [GR17], and Mann [Man22],
our collective understanding of the six operations has developed from a yoga to a rig-
orously defined notion. Roughly speaking, on associates to the pair (C , E) the category
of correspondences Corr(C , E), whose objects are the same as C and whose morphisms
are given by spans. A six-functor formalism is then a lax-symmetric monoidal functor
Q : Corr(C , E) → Cat∞

6. This amazingly succinct definition provides a viable way to
manipulate six-functor formalisms and produce new ones out of old ones.

In §2.3 we recall some fundamental notions in the theory of six-functor formalisms,
following the conventions established by Mann [Man22, §A.5].

4This is not related to the notion of “best linear approximation” in the Goodwillie calculus.
5For a more detailed exposition we direct the reader to §2.3 and [Man22, Sch22].
6Once again, for a more detailed exposition we direct the reader to §2.3 and [Man22, Sch22].
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In §2.3.1 we develop an extension formalism for abstract six-functor formalisms. The
content of §2.3.1 is mostly a re-hashing of [Sch22, Theorem 4.20] and we include it to
convince the reader that the result of loc. cit. is true in greater generality (please see also
Remark 2.3.7). Although it is rather technical, the basic idea is the following. In many
situations, one can often construct a basic six-functor formalism; for instance, in analytic
geometry, it is not so hard to construct a six-functor formalism for quasi-coherent sheaves
in which the !-able morphisms are the qcqs ones, and they all satisfy f! = f∗. However,
this often doesn’t include most of the interesting morphisms for which we want to define
!-functors: for instance, in analytic geometry, many morphisms are not quasi-compact.
Therefore, we should enlarge the class of !-able morphisms. This is the purpose of Theorem
2.3.10, which allows us to enlarge the class of !-able morphisms to a class E with good
stability properties: namely E is !-local on the source, ∗-local on the target, stable under
disjoint unions and tame (Definition 2.3.9). A heuristic is that this extension formalism
is giving us a purely categorical (as opposed to geometric) way to arrive at a notion of
“relative compact supports”.

In §2.3.2 we apply the extension formalism of §2.3.1 to obtain a six-functor formalism
for quasi-coherent sheaves on (derived) stacks in relative algebraic geometry (Theorem
2.3.17). It seems more appropriate to direct the reader to §2.3.2, but we remark that The-
orem 2.3.17 is directly applied to construct the six-functor formalism for quasi-coherent
sheaves on derived rigid spaces in §3.1.5.

In §2.3.3 we investigate the theory of Fourier–Mukai transforms in relative algebraic
geometry. Our focus is not on defining Fourier–Mukai transforms, given that this problem
was completely solved7 in [HM24]. Rather, given morphisms of stacks X → Y ← Z in
relative algebraic geometry, we investigate the following questions:

⋆ When does the tensor product formula

QCoh(X)⊗QCoh(Y ) QCoh(Z) ≃ QCoh(X ×Y Z) (1.3)

hold?

⋆ When is QCoh(X) dualizable and canonically self-dual as a QCoh(Y )-module cate-
gory?

⋆ When is the Fourier–Mukai transform

FM : QCoh(X ×Y Z)→ FunLQCoh(Y )(QCoh(X),QCoh(Z)) (1.4)

an equivalence of ∞-categories?

Our answers to these questions are contained in Theorem 2.3.22 and Lemma 2.3.23. I
am grateful to Peter Scholze for explaining the main idea of the proof to me. As usual,
by specializing to V = D(CBornR) we obtain the corresponding statements in derived
analytic geometry: see Corollary 3.1.47 for a sample application.

1.3 What is done in Chapter 3.

Let K/Qp be a complete field extension.

7That is, Heyer–Mann defined the 2-functor from their 2-category of correspondences to PrL (in
very great generality), which gives the Fourier–Mukai transform together with its compatibility with
composition.
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§3.1: Derived rigid geometry. As the reader has probably gathered by now, the idea
of §3.1 is that by doing algebraic geometry relative to D(CBornK), we obtain a theory
of derived analytic geometry, which contains a theory of derived rigid geometry. The
material of §3.1 owes an overwhelming intellectual debt to [BBKK24] and also takes much
inspiration from [Man22, §2].

In §3.1.1 we define the category dAfndAlg as a certain full subcategory of the monoids
in D⩾0(CBornK). For any A ∈ dAfndAlg, its truncation π0A is an affinoid algebra in the
classical sense. We define dAfnd to be the opposite ∞-category to dAfndAlg. We denote
the object of dAfnd corresponding to A ∈ dAfndAlg by the formal expression dSp(A). We
define the weak Grothendieck topology on dAfnd whose covers are essentially given by finite
jointly-surjective collections of derived rational subspaces. We prove that this topology is
subcanonical and that the prestack sending

dSp(A) 7→ QCoh(dSp(A)) := ModA(D(CBornK)) (1.5)

is a sheaf in the weak topology.
In §3.1.2 we define the category dRig of derived rigid spaces as a certain full subcate-

gory of Shvweak(dAfnd,∞Grpd). The full subcategory dRig is closed under all coproducts
and fiber products, and dRig is equipped with the strong Grothendieck topology whose cov-
ers are given by jointly-surjective families of analytic subspaces. By right Kan extension
along dAfndop → dRigop, the functor QCoh becomes a sheaf in the analytic topology.

In §3.1.3 we explain how Hoffman-Lawson duality [Joh86, VII §4] can be used to
associate a locally spectral topological space |X| to any X ∈ dRig, whose locale of open
subsets is canonically isomorphic to the locale of analytic subspaces of X. We also define a
functor X 7→ X0 sending X to its classical truncation, which extends dSp(A) 7→ dSp(π0A),
and prove the topological invariance property |X| ∼= |X0|. Thus, derived rigid geometry
obeys one of the principles of derived geometry, that “all the geometry happens on X0”.

In §3.1.4 we define qcqs morphisms of derived rigid spaces and prove some of their
properties. For any morphism f : X → Y in dRig, we write f∗ for the symmetric-monoidal
pullback functor from QCoh(Y ) to QCoh(X) and f∗ for its right adjoint. In Lemma 3.1.37,
we show that for any qcqs morphism f : X → Y in dRig, the functor f∗ satisfies base-
change and the projection formula. This allows for the construction of a basic six-functor
formalism in which the !-able morphisms are the qcqs ones (Corollary 3.1.39).

In §3.1.5 we investigate further the six-functor formalism for quasi-coherent sheaves on
derived rigid spaces. We prove in Proposition 3.1.44 that the six-functor formalism con-
structed in §3.1.4, is the unique extension from (dAfnd, all) to (dRig, qcqs). On the other
hand, by the formalism of §2.3.2 we obtain a six-functor formalism on Shvweak(dAfnd,∞Grpd),
extending the one on (dAfnd, all), with a class of !-able edges E which has all the good
stability properties. By combining this with the unicity, we obtain the desired six-functor
formalism on dRig with a much larger class of !-able edges than just the qcqs ones.

In §3.1.6 we establish that various interesting (non quasi-compact) morphisms in rigid
geometry, really do belong to the class E of !-able morphisms. Using that the class E is
!-local on the source, this boils down to showing that certain infinite covers are of universal
!-descent (Corollary 3.1.51), so that for instance the morphism A1

K → ∗ is !-able (Example
3.1.52). A notable feature of our approach is that we do not use compactifications, only
the notion of “compact supports” provided to us by §2.3.1.

In §3.1.7 we develop a theory of local (co)homology in derived rigid geometry. Let
X ∈ dRig and S ⊆ |X| be a closed subset. Under the hypothesis that the complementary
open j : U ↪→ X satisfies j! ≃ j∗, we obtain various recollement sequences (Proposition
3.1.53). In Proposition 3.1.54 we use the results of §3.1.6 to provide a criterion for when
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j! ≃ j∗. As a by-product we also obtain formulas for the local (co)homology functors in
terms of sequential limits or colimits.

In §3.1.8 and §3.1.9 we define Zariski-closed and Zariski-open immersions as the com-
plements of Zariski-closed immersions. We show in Proposition 3.1.60 that these fit in to
the formalism of §3.1.7: in particular, if j : U → X is a Zariski-open immersion, there is
an equivalence j! ≃ j∗.

In §3.1.10 we introduce germs along Zariski-closed immersions. The definition is quite
simple. Let i : Z = dSp(B) → dSp(A) = X be a Zariski-closed immersion of derived
affinoids, induced by a morphism A→ B surjective on π0. Then the germ along Z is

A†
Z := colim

U⊇|Z|
AU (1.6)

where the colimit is taken in dAlg := CAlg(D⩾0(CBornK))op and runs over all affinoid
subdomains U ⊇ |Z|. We denote the object of the opposite category dAff := dAlgop

corresponding to A†
Z by the formal expression (Z ⊆ X)†. In Proposition 3.1.64 we show

that there is a natural equivalence of ∞-categories

ΓZ QCoh(X) ≃ QCoh((Z ⊆ X)†) = ModA†
Z
D(CBornK), (1.7)

in algebra, we are familiar with the identification between “sheaves with support” and
sheaves on the formal completion, and this is nothing but an analytic counterpart to that.
Indeed, a recurring theme of this thesis is the following: everywhere where one would
see a “formal neighbourhood” in algebraic geometry, in our analytic geometry we instead
replace it by an analytic germ, and see what we get.

In the brief §3.1.11 we investigate a six-functor formalism which incorporates the above
“germs”. In this we prefer a näıve approach. That is, we take the “trivial” six-functor
formalism on dAff = CAlg(D⩾0(CBornK)) which sends X = dSp(A) to QCoh(dSp(A)) :=
ModAD(CBornK) and in which every morphism f satisfies f! = f∗. The utility is that
our “germs” naturally belong to dAff. Then we apply the formalism of 2.3.1 to obtain
a six-functor formalism on PStk := Psh(dAff,∞Grpd), with a class of !-able edges which
has the good stability properties.

§3.2: Stratifications and analytic D-modules. The theory developed in §3.1.10 and
§3.1.11 allows us in §3.2.2 to contemplate the following. For any morphism f : X → Y
in dAfnd and any n ⩾ 0 we can consider the germ (X ⊆ Xn+1/Y )† along the diagonal.
Letting n vary, these can be arranged into a simplicial object in PStk, which is in fact
an internal groupoid object, called the infinitesimal groupoid and denoted Inf(X/Y ). We
define the stratifying stack of f as the geometric realization

(X/Y )str := colim
[n]∈∆op

Inf(X/Y )n, (1.8)

where the colimit is taken in PStk. When Y = dSp(K) = ∗ is the terminal object, we
just write Inf(X) and Xstr. As in [Sch22, Lecture VIII], the idea is that the six-functor
formalism for stratifications already lives in the six-functor formalism on PStk. More
precisely, we identify a class of good morphisms, c.f. Definition 3.2.13, which is stable
under base-change and composition, and is such that (−)str induces a functor

(−)str : Corr(dAfnd, good)→ Corr(PStk, ‹E), (1.9)
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where we have denoted the class of !-able edges in the six-functor formalism on PStk by‹E. By post-composition with the six-functor formalism QCoh on (PStk, ‹E) gives a basic
six-functor formalism

Strat := QCoh ◦(−)str (1.10)

for analytic crystals. By Kan extension, we can lift Strat to a six-functor formalism on all of
dRig, in which the class Estr of !-able morphisms contains all those which are representable
in the class good. Unfortunately, it does not seem that the extension formalism of §2.3.1
applies here because the class of good morphisms does not have the right-cancellative
property, so that the extension principles of [Man22] have to be applied in a more ad-hoc
way.

In §3.2.3 we prove that Strat, when viewed as a prestack via the upper-star functors,
is a sheaf in the analytic topology (Lemma 3.2.17). We prove a version of Kashiwara’s
equivalence for a class of Zariski-closed immersions i : Z → X in dRig which we call
stratifying : this means that i locally admits a retraction.

In §3.2.4, we investigate the relation between Strat(X) and “D-modules”. Let X ∈
dAfnd. The key to understanding the relation is looking at the canonical morphism p :
X → Xstr and the induced adjunctions p∗ ⊣ p∗ and p! ⊣ p! on quasi-coherent sheaves. We
define the comonad of (analytic) jets to be J∞

X := p∗p∗ and the monad of (infinite-order)
differential operators to be D∞

X := p!p!. It is always the case that p∗ ⊣ p∗ is comonadic:
that is, there is an equivalence between Strat(X) and comodules in QCoh(X) over the
comonad J∞

X . If X → Xstr is of !-descent then the adjunction p! ⊣ p! is monadic so that
there is an equivalence between Strat(X) and the category of modules over the monad
D∞
X . It turns out that there is a canonical equivalence p! ≃ p∗ and that this can be

used to pass between these descriptions in terms of J∞
X -comodules and D∞

X -modules. By
base-change, the underlying endofunctors of J∞

X and D∞
X are given by the simple formulas

J∞
X ≃ π̃1,∗π̃∗

2 ≃ (A“⊗KA)†∆“⊗A(−) and D∞
X ≃ π̃2,∗π̃!

1 ≃ RHomA((A“⊗KA)†∆,−).

Here π̃1, π̃2 : (X ⊆ X × X)† → X are the two projections. Moreover, under suitable
hypotheses, we can chase the explicit equivalence of categories implicit in the Barr–Beck–
Lurie theorem to give formulas for the six operations in Theorem 3.2.28. For some reason,
it turns out to be convenient to use both the descriptions to give these formulas, in terms
of jets and differential operators.

In Theorem 3.2.34, we give a partial answer to the question of when the morphism
p : X → Xstr is of (universal) !-descent. From the previous discussion, this is clearly
important for knowing when Strat(X) is related to D∞

X -modules. We prove that p is of
universal !-descent whenever X is a classical affinoid equipped with an étale morphism
X → Dr

K .
In §3.2.6 we use the method of §2.2.4 to relate modules over the monad D∞

X to mod-

ules over Ardakov–Wadsley’s ring ÙDX(X). Here are our main results: as it turns out,
the condition that the natural transformation (1.2) is an equivalence, is related to the
functional-analytic property of being Fréchet.

Theorem 1.3.1. Let X = Sp(A) be a classical affinoid equipped with an étale morphism
X → Dr

K . Let Fr(X) ⊆ QCoh(X) be the full subcategory spanned by complexes whose
cohomology groups are Fréchet spaces. Then:

(i) The full subcategory Fr(X) is preserved by the monad D∞
X and there is an equivalence

of ∞-categories
RModÙDX(X)

Fr(X) ≃ ModD∞
X

Fr(X). (1.11)
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(ii) The category DC(X) of Bode’s C-complexes8 [Bod21, §8] is naturally a full subcate-
gory of RModÙDX(X)

Fr(X). In particular, by the result of Theorem 3.2.34, we obtain

a fully-faithful functor

DC(X) ↪→ Strat(X) = QCoh(Xstr). (1.12)

Since the heart of DC(X) is the category of coadmissible ÙDX(X)-modules, this gets us

a fully-faithful functor from coadmissible ÙDX(X)-modules to Strat(X). So they really do
have an interpretation in terms of “†-infinitesimal parallel transport”.

In §3.2.7 we prove various descent results for ÙD-modules. One important input is
the noncommutative notion of descendability from §2.2.3. We recall the definition of the
Banach-completed differential operators DnX(X) from, for instance [Bod21, §2]; these are

Noetherian Banach algebras and one has ÙDX(X) = limnDnX(X).

Theorem 1.3.2. Let X = Sp(A) be a smooth classical affinoid equipped with an étale
morphism X → Dr

K .

(i) The prestacks

RModÙDX(−)
D(CBornK) and RModDn

X(−)D(CBornK) (1.13)

are sheaves in the weak topology on X.

(ii) The prestack RModb,fg
Dn

X(−)D(CBornK) is a sheaf on the site of pn-accessible9 affi-

noid subdomains of X. Here the superscript b, fg denotes cohomologically bounded
complexes with finitely-generated cohomology.

(iii) There is an equivalence of ∞-categories

DC(X) ≃ lim
n

RModb,fg
Dn

X(−)D(CBornK), (1.14)

where the left-hand-side again denotes Bode’s C-complexes [Bod21, §8].

(iv) The prestack DC(−) is a sheaf in the weak topology on X.

I am grateful to Andreas Bode for helpful discussions about the proof of Theorem
1.3.2(iii).

It is natural to ask whether the embedding of C-complexes in (1.12) is compatible with
restrictions, so that it can be globalised. This turns out to be true (that is Theorem 3.2.70)
but the proof is non-trivial for the following reason: the comparison between Strat(X) and
D∞-modules comes from forgetting via an upper-shriek functor, but we want to use the
upper-star restriction functors for ÙD-modules. In fact, we have to use the “parametrized
monadicity theorem” of §2.2.2 to manage some of the coherences. Using this compatibility
with restrictions we obtain the following.

Theorem 1.3.3. Let X be a smooth classical rigid space. For such X we define the value
of DC(−) by Kan extension10, see Definition 3.2.71. Then there is a fully-faithful functor

DC(X) ↪→ Strat(X) = QCoh(Xstr). (1.15)

This induces a fully-faithful functor

{coadmissible DX-modules} ↪→ Strat(X). (1.16)
8To be precise, I mean its natural ∞-categorical enhancement.
9By this we mean pnTX -accessible in the sense of [AW19, §4.5].

10If you like, you could call this the “∞-stackification” of Bode’s C-complexes.
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In the future we may try to give a more intrinsic characterisation of the essential image
of these functors. This is not completely straightforward, as Proposition 3.2.75 shows that
the essential image of (1.15) is not contained in the dualizable objects.

Relation to existing theories. The content of Chapter 3 is similar in spirit to that of
Rodŕıguez Camargo [Cam24]. We believe that there should be a precise relation between
our theory and his. This is of course related to the problem of compatibility of the
condensed and bornological formalisms of analytic stacks.

On the potential applications. We were originally motivated by applications to the
study of locally-analytic representations of p-adic Lie groups. Let G be a rigid-analytic
group. Then the germ (1 ⊆ G)† along the unit of G is a group object in PStk. Hence,
(1 ⊆ G)† may act on objects of PStk, in particular, suppose that (1 ⊆ G)† acts on a rigid
variety X. In this situation we may form the quotient

X/(1 ⊆ G)† := colim
[n]∈∆op

X × (1 ⊆ Gn)†. (1.17)

the colimit being taken in PStk. The action morphism determines a canonical morphism
of groupoid objects:

X × (1 ⊆ G•)† → (X ⊆ X•+1)†, (1.18)

and taking colimits we obtain a correspondence in PStk:

Xstr
β←− X/(1 ⊆ G)†

α−→ ∗/(1 ⊆ G)†. (1.19)

A slogan for the morphism β is that (1 ⊆ G)† acts on X by “†-infinitesimal symmetries”.
Similarly to the situation for Xstr, one has that QCoh(∗/(1 ⊆ G)†) can be described as
comodule objects in QCoh(∗) over the Hopf algebra object C1(G,K) of germs of functions
at the identity11.

Such objects arise naturally in the following context. Assume that Qp ⊆ L ⊆ K is
an intermediate field extension with L/Qp finite. Let G be a reductive algebraic group
defined over L. Then G(L) can be regarded as a locally L-analytic group which we denote

by G(L)la. If we set G = Grig
K , that is, the rigid-analytification, then one can identify the

germs of functions at the identity:

C1(G,K) = C1(G(L)la,K). (1.20)

Therefore, the restriction of locally-analytic representations to the germ at 1, is a source
of objects in QCoh(∗/(1 ⊆ G)†). For more about locally-analytic representations we
refer the reader to the works of Schneider–Teitelbaum [ST02, ST03]. In the condensed
setting, Rodŕıguez Camargo–Rodrigues Jacinto have also given a stacky interpretation of
locally-analytic representations [RJRC22, RJRC25].

Returning to the correspondence (1.19), the six-functor formalism on PStk furnishes
an adjunction

β!α
∗ : QCoh(∗/(1 ⊆ G)†) ⇆ QCoh(Xstr) : α∗β

!. (1.21)

The left adjoint β!α
∗ here is the analytic Beilinson–Bernstein localization functor. In

the case when G = Grig
K as above, and X = (GK/BK)rig is the flag variety, with its

11When the underlying object of QCoh(∗) belongs to Fr(∗), one also has a relation to module objects

over the Arens–Michael envelope Ŭ(g), in a similar manner to Theorem 1.3.1.
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natural (1 ⊆ G)†-action obtained by restricting the natural G-action, one expects the
adjunction (1.21) to be close to an equivalence. That is, if one restricts to objects of
QCoh(∗/(1 ⊆ G)†) with trivial infinitesimal character, then (1.21) should be an equiva-
lence of ∞-categories.

In the algebraic setting, this stacky approach to Beilinson–Bernstein localization has
been carried out by Ben-Zvi–Nadler [BZN19], and in a real-analytic setting (using con-
densed mathematics) by Scholze [Sch24]. In our setting, it is possible that this analytic
Beilinson–Bernstein localization recovers and extends the result of Ardakov [Ard21, The-
orem 6.4.8], removing the finiteness condition of (co)admissibility.

1.4 What is done in Chapter 4

In Chapter 4 we investigate the possibility that the material of Chapter 3 could be sim-
plified and improved via the use of algebraic theories. Chapter 4 was written after the
results of the rest of this thesis were obtained, and consequently it is independent of the
results of Chapter 3. We include it because it seems interesting.

Many kinds of “geometry” are constructed in the following way: one starts with some
class of “free” algebras (usually corresponding to some kinds of functions on “Cartesian
spaces” like Rn) and enlarges it by sifted colimits to obtain the relevant category of
algebras. The category of affine spaces is opposite to this category of algebras, and more
general spaces can be interpreted as sheaves on this class of affines (which is like a kind
of cocompletion).

This perspective is made rigorous via the following definition: A Lawvere theory is
a (small) category T equipped with finite products, with a finite-product preserving,
identity-on-objects12 functor T → Fin to the category of finite sets. The category of
algebras for T is13 AlgT := FunΠ(T ,Set) and the obvious homotopical version of this
notion is dAlgT := FunΠ(T ,∞Grpd). It is tautological, and yet striking, to observe that

dAlgT = sInd(T op), (1.22)

agrees with the ∞-categorical sifted cocompletion, which is also Quillen’s nonabelian de-
rived category or the animation (in more modern nomenclature) of AlgT . The category
prestacks for T is Psh(dAlgT ,∞Grpd).

By incorporating a set of sorts one arrives at the notion of a multisorted Lawvere theory
which, for our purposes, captures the notion that our building-blocks are disks of varying
radius: this appears to be the correct way to formulate rigid- and dagger-geometry via
algebraic theories.

There is an extensive literature on this approach to (derived) geometry, which I have
to admit that I am not fully up to speed with. Some sources with plenty of examples
are the awesome paper of Carchedi and Roytenberg [CR13] and the recent work of Ben-
Bassat–Kelly–Kremnizer [BBKK24].

In §4.1 we give a construction of a six-functor formalism, for quasi-coherent sheaves
on prestacks relative to a Lawvere theory. We take a (presentably symmetric monoidal,
stable) ∞-category V and we suppose that we are given a finite-coproduct preserving
functor

T op → CAlg(V ) (1.23)

12Here we really mean the identity.
13Here and elsewhere, FunΠ denotes the finite product-preserving functors.
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we call this a V -realization of T (Definition 4.1.5). There is something of an art in
finding a V -realization: in many situations, it appears that taking V = D(CBornR) for an
appropriate Banach ring R works, and the functor (1.23) expresses that the free algebras
are endowed with a canonical bornology. That (1.23) is finite-coproduct preserving often
follows from flatness of the free algebras, with respect to the completed tensor product.
In the presence of a V -realization, we obtain a six-functor formalism for quasi-coherent
sheaves on the category of prestacks for T (Theorem 4.1.6).

In §4.2 we obtain a six-functor formalism for “D∞-modules” on prestacks relative to
a Fermat theory. While we do not define it in this introduction (it is Definition 4.2.1), the
reader should think of a Fermat theory as the minimal enhancement of a Lawvere theory
needed to define certain structures of “differentiable nature”, such as 1-forms, Taylor
series, or cotangent complexes. The insight of [Tar25] is that we can perhaps add another
item to this list: that is, a Fermat theory is the essentially the minimal structure needed
to define an analytic de Rham space.

Let me elaborate. Fermat theories were originally introduced in [DK84] where many
of their fundamental properties were proved. Possibly the most important is the following
[DK84, Proposition 1.2]; any algebra A for a Fermat theory T has an underlying ring,
and for any ideal I in the underlying ring, then A/I acquires the canonical structure of a
T -algebra. Using this one can write down various ideals, in particular one can essentially
copy the definition of ∞-nilradical introduced in [BK18] to obtain an analytic notion14

of reduction [Tar25, Construction A.33]. By precomposition with this analytic reduction
functor, one obtains the analytic de Rham space XT dR of a prestack X (Definition 4.2.6)
and a corresponding endofunctor (−)T dR of the category of prestacks. By pre-composing
the six-functor formalism of §4.1 with the functor induced by (−)T dR we obtain a six-
functor formalism for “D∞-modules” for the Fermat theory T .

This conjecturally gives a uniform construction of a six-functor formalism for “D∞-
modules” in (derived) smooth geometry, Stein geometry, rigid geometry, dagger geometry
(over an Archimedean or non-Archimedean base): there are many possibilities. In complex
geometry, a theory of D∞-modules based on Ind-Banach spaces has been developed by
Prosmans–Schneiders [PS00b]; it is possible that our construction yields a six-functor
formalism in their setting.

The construction of Chapter 4 is sufficiently general that it can be used to obtain a
six-functor formalism for “D∞-modules” over the Banach ring (Z, | · |∞). In future work
we will explore these examples in more detail.

14In the case of a sorted Fermat theory, the definition of reduction has to be changed slightly: see
Remark 4.2.7.

12



Chapter 2

Relative algebraic geometry

2.1 Homotopical algebra in quasi-abelian categories

We make extensive use of the theory of homotopical algebra in quasi-abelian categories as
developed in [Kel24] and [Sch99]. We assume familiarity with the basics of higher algebra
and model categories, as these topics are too vast to give a proper summary; we will give
an indication of any non-standard or particular notions.

Let A be a quasi-abelian category. Recall [Sch99, §1] that this means that A is an
additive category which has all kernels and cokernels, and strict1 epimorphisms (resp.
monomorphisms) are stable under pullbacks (resp. pushouts). We recall the following
properties.

Definition 2.1.1. (i) A functor F : A → B between quasi-abelian categories is called
left exact (resp. strongly left exact) if it preserves the kernels of strict morphisms
(resp. all morphisms).

(ii) A functor F : A → B between quasi-abelian categories is called right exact (resp.
strongly right exact) if it preserves the cokernels of strict morphisms (resp. all
morphisms).

(iii) A functor F : A → B between quasi-abelian categories is called exact (resp. strongly
exact) if it is left and right exact (resp. strongly left and right exact).

Definition 2.1.2. [Kel24, Definition 2.47]

(i) An object P ∈ A is called projective if the functor Hom(P,−) : A → Ab (valued in
abelian groups), takes strict epimorphisms to surjections.

(ii) We say that A has enough projectives if for each object M ∈ A there exists a
projective object P together with a strict epimorphism P ↠M .

Definition 2.1.3. [Kel24, Definition 2.92] Assume that A admits small coproducts. A
small subcategory P of objects in A is called generating if for each object M ∈ A
there exists a small collection {Pi}i∈I of objects of P together with a strict epimorphism⊕

i∈I Pi ↠M .

1Recall that a morphism f is called strict if the natural morphism coker ker f −→ ker coker f is an
isomorphism.
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Definition 2.1.4. [Sch99, Definition 2.1.10]. Let A be a quasi-abelian category.

(i) Assume that A admits (small) coproducts. An object C ∈ A is called small if
HomA (C,−) : A → Ab commutes with (small) coproducts.

(ii) The category A is called quasi-elementary if it is cocomplete and has a small gen-
erating subcategory P ⊆ A of small projective objects.

Definition 2.1.5. [Kel24, Definition 2.97] Let S be a collection of morphisms in a co-
complete quasi-abelian category A stable under composition.

(i) Let I be a filtered category. An object C ∈ A is called (I,S)-tiny if the functor
Hom(C,−) : A → Ab commutes with colimits of diagrams in FunS(I,A ). Here
FunS(I,A ) ⊆ Fun(I,A ) denotes the sub-class of those functors which take mor-
phisms in I into S.

(ii) The category A is called (I,S)-elementary if A is generated by a subcategory P ⊆
A consisting of (I,S)-tiny projective objects.

(iii) An object C ∈ A is called S-tiny if the functor Hom(C,−) : A → Ab commutes
with colimits of diagrams in FunS(I,A ), for any filtered category I.

(iv) The category A is called S-elementary if A is generated by a subcategory P ⊆ A
consisting of S-tiny projective objects.

In what follows we will often take (I,S) := (N,SplitMon), where SplitMon is the class
of split monomorphisms in A , or S := AdMon to be the class of strict monomorphisms
in A , or S := all. In each of these cases we say that A is (N,SplitMon)-elementary,
AdMon-elementary, and elementary, respectively. Of course, we have the following chain
of implications:

elementary

AdMon-elementary

quasi-elementary

(N,SplitMon)-elementary

enough projectives.

(2.1)

Notations 2.1.6. Let A be an additive category and let Ch(A ) denote the category of
cochain complexes. In this thesis we always use superscripts to denote cohomological in-
dexing convention and subscripts for homological indexing. These conventions are related
by M i = M−i for i ∈ Z.

Theorem 2.1.7. [Kel24, Theorem 4.59, Theorem 4.65]

(i) Let A be a quasi-abelian category with enough projectives. Then the projective model
structure on Ch⩽0(A ) exists. The weak equivalences, fibrations and cofibrations may
be described as follows:

(W) A morphism is a weak equivalence if it is a strict quasi-isomorphism, i.e., its
cone is strictly exact.
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(F) A morphism is a fibration if the its components are strict epimorphisms in
positive degrees.

(C) A morphism is a cofibration if it is a degreewise strict monomorphism with
degreewise projective cokernel.

Further, this is a simplicial model structure.

(ii) Assume that A is a (N,SplitMon)-elementary quasi-abelian category. Then the
projective model structure on Ch(A ) exists. The weak equivalences and fibrations
may be described as follows:

(W) A morphism is a weak equivalence if it is a strict quasi-isomorphism, i.e., its
cone is strictly exact.

(F) A morphism is a fibration if it is a degreewise strict epimorphism.

Further, this is a stable and simplicial model structure.

This permits us to make the following definition.

Definition 2.1.8. Let A be a (N,SplitMon)-elementary quasi-abelian category. The
derived ∞-category of A is defined to be the underlying ∞-category of the simplicial
model category Ch(A ). That is, it is the ∞-categorical localization

D(A ) := N(Ch(A ))[W−1]. (2.2)

This is a stable ∞-category.

We recall [Sch99, §1.2.2] that D(A ) is equipped with two canonical t-structures. Of
these, it is conventional to prefer the left t-structure which may be described as follows.2

Proposition 2.1.9. [Sch99, §1.2.2] Let D⩽0(A ) (resp. D⩾0(A )) denote the full sub ∞-
category of complexes which are strictly exact in positive (resp. negative) degrees. Then
the pair

(D⩽0(A ), D⩾0(A )) (2.3)

determines a t-structure on D(A ).

The heart of this t-structure is called the left heart of A [Sch99, §1.2.3] and denoted
by LH(A ). Consequently, we get cohomology functors

Hi : D(A )→ LH(A ) (2.4)

for each i ∈ Z. The category LH(A ) admits the following very explicit description.
Let K(A ) be the category with Ob(K(A )) = Ob(Ch(A )) and whose morphisms are
chain-homotopy classes of morphisms in Ch(A ).

Proposition 2.1.10. [Sch99, Corollary 1.2.21] The category LH(A ) is equivalent to the
full subcategory of K(A ) on two-term complexes

0→M−1 d−→M0 → 0 (2.5)

2We recall that a t-structure on a stable ∞-category, is by definition given by a t-structure on its
homotopy category.
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with d a monomorphism, localized at the class of morphisms f : [M−1 →M0]→ [N−1 →
N0] such that

M−1 M0

N−1 N0

f(−1) f0 (2.6)

is a Cartesian and coCartesian square in A .

With respect to this description, we obtain the following:

Proposition 2.1.11. [Sch99, §1.2], see also [Bod21, §3.1].

(i) The canonical functor I : A → LH(A ) is induced by the functor given by

M 7→ [0→M ]. (2.7)

This is fully-faithful and admits a left adjoint C : LH(A )→ A which is induced by
the functor

[M−1 d−→M0] 7→ coker d. (2.8)

on two-term complexes, so that A is a reflective subcategory of LH(A ).

(ii) The cohomology functor Hi : D(A )→ LH(A ) is given on objects by

Hi : M• 7→ [coker ker di−1 → ker di]. (2.9)

In particular, a complex M• ∈ D(A ) is strict (meaning that its differentials are
strict morphisms) if and only if the cohomology objects HiM• ∈ LH(A ) factor
through (the essential image of) A . A complex M• is strictly exact if and only if
HiM• = 0 for all i ∈ Z.

2.1.1 Banach rings and complete bornological modules

Remark 2.1.12 (Important remark). In this thesis we only consider non-Archimedean
Banach algebras and non-Archimedean Banach modules. However, it seems quite likely,
or perhaps even obvious, that much of the content of this thesis carries over to the
Archimedean setting.

Our conventions on Banach rings and modules follows Berkovich [Ber90, Chapter 1].

Definition 2.1.13. (i) Let V be an abelian group. A (non-Archimedean) seminorm on
V is a function ∥ · ∥ : V → R⩾0 such that ∥0∥ = 0 and ∥v − w∥ ⩽ max{∥v∥, ∥w∥}
for all v, w ∈ V . It is called a norm if ∥v∥ = 0 implies v = 0. V is called complete

if it is complete as a metric space. We write “V for the completion of a seminormed
abelian group V . Seminorms ∥ · ∥ and ∥ · ∥′ are called equivalent if there exists
C,C ′ ∈ R>0 such that C∥ · ∥ ⩽ ∥ · ∥′ ⩽ C ′∥ · ∥.

(ii) Let R be a ring. A seminorm on R is a seminorm on the abelian group (R,+) such
that ∥1∥ = 1 and ∥fg∥ ⩽ ∥f∥ · ∥g∥ for all f, g ∈ R. It is called multiplicative if
∥fg∥ = ∥f∥ · ∥g∥ is satisfied for all f, g ∈ R. A Banach ring is a normed ring which
is complete as a metric space.
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(iii) Let R be a seminormed ring. A seminormedR-module is a R-module V equipped with
a seminorm ∥ · ∥V such that there exists C ∈ R>0 such that ∥fv∥V ⩽ C∥f∥R∥v∥V
for all f ∈ R and all v ∈ V . If R is a Banach ring, then such V is called a Banach
R-module if it is complete as a metric space.

(iv) A non-Archimedean field is a field which is complete with respect to a multiplicative
seminorm.

(v) Let R be a Banach ring and let V,W be Banach R-modules. The completed tensor
product V“⊗RW is defined to be the completion of V ⊗RW with respect to the norm

∥x∥ := inf
{

max
i
∥vi∥∥wi∥ : x =

∑
vi ⊗ wi

}
. (2.10)

The internal Hom, written HomR(V,W ) is the R-module of bounded R-linear maps
HomR(V,W ) equipped with the operator norm.

Definition 2.1.14. Let K be a non-trivially valued non-Archimedean field with unit ball
o ⊆ K. Let V be a K-vector space. A bornology on V is a collection of B of bounded
subsets of V satifying the following properties:

(i) If B ∈ B and B′ ⊆ B then B′ ∈ B;

(ii) If v ∈ V then {v} ∈ B;

(iii) B is closed under finite unions;

(iv) If B ∈ B and r ∈ K then rB ∈ B;

(v) If B ∈ B then the o-submodule o ·B ∈ B.

The pair V = (V,B) is called a (convex) bornological K-vector space. A morphism
T : V → W of K-vector spaces is called bounded if T (B) ⊆ W is bounded for every
bounded subset B ⊆ V . In this way we obtain the category BornK of bornological K-vector
spaces.

Proposition 2.1.15. [HN70, PS00a, BBB16]. Let K be a non-trivially valued non-
Archimedean field with unit ball o ⊆ K.

(i) The category BornK is closed symmetric monoidal. The bornological tensor product
is defined to be V ⊗K W endowed with the bornology generated by the collection of
B⊗oB′ for B,B′ bounded o-submodules of V,W . The internal Hom HomK(V,W ) is
the K-vector space HomK(V,W ) of bounded linear maps equipped with the bornology
generated by equibounded subsets.

(ii) BornK is a complete and cocomplete AdMon-elementary quasi-abelian category.

(iii) A generating family of AdMon-tiny projective objects is given by {
∐⩽1
S K}S for S

ranging over (small) sets. Here
∐⩽1
S K is the normed K-vector space with underlying

K-vector space
∐
S K and norm ∥(rs)s∥ := sups ∥rs∥.

(iv) A morphism φ : V → W is strict if and only if the subspace bornology on imφ
coincides with the quotient bornology on V/ kerφ.
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Every seminormed K-vector space acquires a bornology in an obvious way. Therefore
we may make the following definition. The point is that the norm should not be the part
of the data of a K-Banach space, only the bornology.

Definition 2.1.16. Let K be a non-trivially valued non-Archimedean field. The category
of seminormed K-vector spaces, (resp. normed K-vector spaces, resp. K-Banach spaces),
is defined to be the full subcategory of BornK on objects V whose bornology is induced by
a seminorm (resp. a norm, resp. a norm making V into a Banach space). We denote
these categories by SNrmK ,NrmK , and BanK , respectively.

Definition 2.1.17. Let K be a non-trivially valued non-Archimedean field and let V ∈
BornK . Given a bounded o-submodule B ⊆ V we define VB := spanK B ⊆ V equipped
with the bornology defined by the gauge seminorm:

∥x∥B := inf{|λ| : x ∈ λB}. (2.11)

Proposition 2.1.18. [HN70, PS00a]. Let K be a non-trivially valued non-Archimedean
field. There is an adjunction

diss : BornK ⇆ Ind(SNrmK) : colim (2.12)

in which the right adjoint diss : V 7→ “colim”VB is fully faithful. The essential image
is given by the essentially monomorphic Ind-objects, i.e., those Ind-objects which are
equivalent to Ind-systems of monomorphisms. Consequently there is an equivalence of
categories

colim : Indm(SNrmK)
∼−→ BornK . (2.13)

Definition 2.1.19. [HN70, PS00a]. Let K be a non-trivially valued non-Archimedean
field and let V ∈ BornK .

(i) V is called separated if, for every B ∈ B there exists a bounded o-submodule B′ ⊇ B
such that the gauge seminorm on VB′ is a norm. We let SBornK ⊆ BornK denote
the full subcategory on separated bornological K-vector spaces.

(ii) V is called complete if, for every B ∈ B there exists a bounded o-submodule B′ ⊇
B such that VB′ is a K-Banach space. We let CBornK ⊆ BornK denote the full
subcategory on complete bornological K-vector spaces.

Proposition 2.1.20. [HN70, PS00a]. Let K be a non-trivially valued non-Archimedean
field.

(i) The inclusion SBornK ⊆ BornK admits a left adjoint sep : BornK → SBornK .

(ii) The category SBornK is closed symmetric monoidal. The tensor product is given by
sep(V ⊗K W ) and the internal Hom is the same as in BornK .

(iii) SBornK is a complete and cocomplete AdMon-elementary quasi-abelian category.

(iv) A generating family of AdMon-tiny projective objects is given by {
∐⩽1
S K}S for S

ranging over (small) sets.

(v) A morphism φ : V →W is strict if and only if imφ is bornologically closed and the
bornology on imφ coincides with the quotient bornology on V/ kerφ.
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(vi) There is an adjunction

diss : SBornK ⇆ Ind(NrmK) : colim (2.14)

in which the right adjoint diss : V 7→ “colim” sep(VB) is fully-faithful and whose
essential image is given by the the essentially monomorphic Ind-objects, so that
there is an equivalence of categories

colim : Indm(NrmK)
∼−→ SBornK . (2.15)

Definition 2.1.21. Let K be a non-trivially valued non-Archimdean field and let V be a
K-Banach space. Let S be a (small) set. We define the space of V -valued zero sequences
to be

c0(S, V ) := {ϕ : S → V : ∀ε > 0,∃ at most finitely many s ∈ S : ∥ϕ(s)∥ > ε}, (2.16)

with the norm ∥ϕ∥ := sups∈S ∥ϕ(s)∥. When V = K we will just write c0(S) := c0(S,K).

Lemma 2.1.22. Let K be a non-trivially valued non-Archimedean field and let V ∈
CBornK .

(i) There is a natural isomorphism

HomK(c0(S), V ) ∼= {functions f : S → V : f(S) ⊆ V is bounded} . (2.17)

(ii) For every S, S′, there are natural isomorphisms

c0(S)“⊗Kc0(S′) ∼= c0(S × S′) ∼= c0(S, c0(S′)), (2.18)

of K-Banach spaces.

Proof. We omit the proof of (i). We only mention that (ii) can be proved using (i) together
with currying and Yoneda’s lemma.

Proposition 2.1.23. [HN70, PS00a] Let K be a non-trivially valued non-Archimedean
field.

(i) The inclusion CBornK ⊆ BornK admits a left adjoint (̂·) : BornK → CBornK .

(ii) The category CBornK is closed symmetric monoidal. The tensor product is given by
the completed tensor product

V“⊗KW := ÿ�V ⊗K W, (2.19)

and the internal Hom is the same as in BornK .

(iii) CBornK is a complete and cocomplete AdMon-elementary quasi-abelian category.
A generating family of AdMon-tiny projective objects is given by {c0(S)}S for S
ranging over (small) sets. A morphism φ : V → W is strict if and only if imφ is
bornologically closed and the bornology on imφ coincides with the quotient bornology
on V/ kerφ.
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(iv) There is an adjunction

diss : CBornK ⇆ Ind(BanK) : colim (2.20)

in which the right adjoint diss : V 7→ “colim”(“VB) is fully-faithful and whose essential
image is given by the the essentially monomorphic Ind-objects, so that there is an
equivalence of categories

colim : Indm(BanK)
∼−→ CBornK . (2.21)

Corollary 2.1.24. Let K be a non-trivially valued non-Archimedean field. In any of
the categories BornK , SBornK and CBornK , colimits of (essentially) monomorphic filtered
systems are strongly exact.

It is possible to give a more efficient “colimit presentation” for bornological K-vector
spaces than the ones presented above. For this purpose we make the following Definition.

Definition 2.1.25. Let K be a non-trivially valued non-Archimedean field and let V ∈
BornK .

(i) We define a transitive, reflexive relation ⩽ on the bounded o-submodules of V by
B ⩽ B′ if there exists a bounded o-submodule S ⊆ K such that B ⊆ S · B′. If
B ⩽ B′ we say that B′ absorbs B.

(ii) We define an equivalence relation ∼ on the bounded o-submodules of V by B ∼ B′

if B ⩽ B′ and B′ ⩽ B.

(iii) We let (S(V ),⩽) denote the collection of ∼-equivalence classes viewed as a poset
with the partial order induced by ⩽.

Lemma 2.1.26. Let K be a non-trivially valued non-Archimedean field.

(i) If V ∈ BornK then “colim”[B]∈S(V ) VB ∈ Ind(SNrmK) is essentially monomorphic
and the natural morphism

colim
[B]∈S(V )

VB
∼−→ V (2.22)

is an isomorphism in BornK .

(ii) If V ∈ SBornK then “colim”[B]∈S(V ) sep(VB) ∈ Ind(NrmK) is essentially monomor-
phic and the natural morphism

colim
[B]∈S(V )

sep(VB)
∼−→ V (2.23)

is an isomorphism in SBornK .

(iii) If V ∈ CBornK then “colim”[B]∈S(V )
“VB ∈ Ind(BanK) is essentially monomorphic

and the natural morphism
colim

[B]∈S(V )

“VB ∼−→ V (2.24)

is an isomorphism in CBornK .

Proof. Given the previous Propositions, the only thing to note is that if B ∼ B′ then
there is an equality VB = VB′ .
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Example 2.1.27. An object V ∈ BornK belongs to the full subcategory SNrmK if and
only if S(V ) has a terminal object.

Definition 2.1.28. [HN70] Let K be a non-trivially valued non-Archimedean field and
let V ∈ BornK .

(i) We say that V is of countable type if it has a countable base for its bornology.
Equivalently, the poset S(V ) has a countable cofinal subset.

(ii) We say that V is metrizable if the poset S(V ) is ℵ1-filtered.

The relation to locally-convex vector spaces is the following.

Proposition 2.1.29. [HN70] Let K be a non-trivially valued non-Archimedean field.
There is an adjunction

(−)t : BornK ⇆ LCVSK : (−)b (2.25)

which is given as follows:

⋆ The functor W 7→ W b endows a locally-convex K-vector space W with its von
Neumann bornology: One has W b = W as K-vector spaces, and a subset B ⊆ W b

is bounded if for every lattice L ⊆ V there exists λ ∈ K such that B ⊆ λL.

⋆ Dually, the functor V 7→ V t endows V with the topology of bornivorous subsets:
One has V t = V as K-vector spaces, and an o-submodule L ⊆ V t is an open
neighbourhood of 0 if for every bounded subset B ⊆ V there exists λ ∈ K such that
B ⊆ λL.

Lemma 2.1.30. [HN70] Let K be a non-trivially valued non-Archimedean field.

(i) If W ∈ LCVSK is metrizable, then the counit morphism W bt → W is an isomor-
phism. In particular we obtain a fully-faithful functor from the full subcategory of
metrizable objects to BornK .

(ii) If W ∈ LCVSK is complete and metrizable, then W b is complete as a bornological
space and metrizable in the sense of Definition 2.1.28. In particular we obtain a
fully-faithful functor (−)b : FrK ↪→ CBornK from the category FrK of K-Fréchet
spaces.

Proof. We only prove the metrizability part in (ii), the rest of the assertions being well-
known. This appears already in [HN70, p.200] where it is attributed to Mackey. Let {Bn}n
be a countable collection of bounded o-submodules of V and let {Ln}n be a (decreasing)
fundamental system of lattices defining the Fréchet topology. By definition of the von
Neumann bornology, for each n there exists λn ∈ K× such that λnBn ⊆ Ln. Set B′ :=∑
n λnBn. Obviously, Bn ⩽ B′ for each n. Further, for each N ⩾ 0 one has B′ ⊆

LN +
∑N
n=1 λnBn, which implies that B′ is von Neumann bounded.

Definition 2.1.31. Let K be a non-trivially valued non-Archimdean field. An object
V ∈ CBornK is called conuclear if for all K-Banach spaces W , the canonical morphism

HomK(V,K)“⊗KW → HomK(V,W ) (2.26)

is an isomorphism.
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Example 2.1.32. Let K be a non-trivially valued non-Archimedean field. Let ϖ ∈ K
with 0 < |ϖ| < 1. Then

K⟨x/ϖ∞⟩ := colim
n

K⟨x/ϖn⟩ =
{ ∞∑
n=0

anx
n : |an||ϖ|−nk

n→∞−−−−→ 0 for some k ∈ Z
}
.

is a conuclear object of CBornK .

Remark 2.1.33. It is natural to ask how the definition of CBornK generalizes when we
replace K by a general Banach ring R. It seems like the good definition is CBornR :=
IndmBanR. By Proposition 2.1.23(iv) this is consistent with our previous definition in the
case when R = K is a non-trivially valued non-Archimedean field.

2.1.2 Universal property of the derived category

In this section we assume that

⋆ A is a quasi-elementary quasi-abelian category.

We fix a small generating set of small projective objects P ⊆ A , and we assume that P
is closed under finite products in A (there is no harm in this). We always view P as a
full subcategory of A . There is a functor

A → FunΠ(Pop,Set) (2.27)

which sends A 7→ hA := Hom(−, A). (Here and elsewhere, FunΠ denotes the finite
product-preserving functors). Passing to simplicial objects, we obtain

sA → FunΠ(Pop, sSet) (2.28)

sending A• 7→ hA• := Hom(−, A•).

Proposition 2.1.34. [Qui67, §II.4] With notations as above. We may define a model
structure (called the standard model structure) on sA as follows: A morphism A• → B•
is a weak equivalence (resp. fibration) if Hom(P,A•)→ Hom(P,B•) is a weak homotopy
equivalence (resp. Kan fibration) in sSet, for all P ∈P.

Proposition 2.1.35 (Quillen, Bergner, Lurie). (i) We may define a model structure
on FunΠ(Pop, sSet) as follows: A morphism α : F → F ′ is a weak equivalence
(resp. fibration) if αP : F (P ) → F ′(P ) is a weak homotopy equivalence (resp. Kan
fibration) in sSet, for all P ∈P.

(ii) This model structure presents the∞-category FunΠ(N(P)op,∞Grpd) = sInd(N(P)).

(iii) By transport of structure via (2.28), the model structure of (i) gives the standard
model structure on sA .

Proof. (i) This is [Lur09b, Proposition 5.5.9.1]. (ii): This is [Lur09b, Corollary 5.5.9.3].
(iii): Obvious.

Proposition 2.1.36. Under the equivalence of categories

N : sA ≃ Ch⩽0(A ) : Γ (2.29)

furnished by the Dold-Kan correspondence, the model structure on sA induces the model
structure on Ch⩽0(A ) and vice-versa.
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Proof. The functors N and Γ furnish an equivalence of categories by, for instance, [Kel24,
Corollary 4.73]. For each P ∈P we have a commutative diagram

sA Ch⩽0(A )

sAb Ch⩽0(Ab)

N

Hom(P,−) Hom(P,−)

N

(2.30)

By definition, f : X• → Y• is a fibration if and only if Hom(P,X•) → Hom(P, Y•) is
a fibration for all P ∈ P. By (the generalization to abelian groups of) [Qui67, Propo-
sition 2.3.1], together with commutativity of the above square, this holds if and only if
Hom(P,N(X•)) → Hom(P,N(Y•)) is an epimorphism (of chain complexes) in positive
degrees. By [Qui67, Proposition 2.4.2] this implies that N(X•) → N(Y•) is a degreewise
strict epimorphism (we recall that in additive categories, the notion of strict and effective
epimorphism coincide). Hence f is a fibration if and only if N(f) is.

Similarly, a morphism f : X• → Y• is a weak equivalence if and only if Hom(P,N(X•))→
Hom(P,N(Y•)) is a quasi-isomorphism of chain complexes, for each P ∈ P. Looking at
the cone of N(X•)→ N(Y•) and applying [Kel24, Corollary 2.95] this holds if and only if
N(X•)→ N(Y•) is a strict quasi-isomorphism. Hence f is a weak equivalence if and only
if N(f) is.

Corollary 2.1.37. The model structure on sA may be equivalently described as follows:
A morphism A• → B• is a weak equivalence (resp. fibration, resp. cofibration), if and only
if it is a strict weak homotopy equivalence (resp. strict epimorphism in positive degrees,
resp. degreewise strict monomorphism with degreewise projective cokernel).

Proof. It should be possible to argue directly, looking at the proof of [Qui67, §II.4]. In
any case, we can use Proposition 2.1.36, whence the claims about weak equivalences
and fibrations are clear. The statement about cofibrations can be deduced from the
corresponding statement for Ch⩽0(A ), which is contained in [Kel24, Theorem 4.65].

Theorem 2.1.38. With notation as above. The functor (2.28) induces an equivalence of
∞-categories

N(sA )[W−1]
∼−→ sInd(N(P)). (2.31)

Proof. The following argument is quite similar to the proof of [Sch99, Proposition 2.1.14].
Let us write A ′ := FunΠ(Pop,Set). This is an abelian category (in fact it is equal to the
left heart of A ). The image of P under the Yoneda embedding gives a generating family
of small (strongly) projective objects for A ′. Hence we may consider the standard model
structure on sA ′. It is clear that there is an equivalence of categories

sA ′ = FunΠ(Pop, sSet) (2.32)

which identifies this model structure with the one from Proposition 2.1.35(i). Let L be
the category obtained from P by freely adjoining (small) direct sums. By the smallness
assumption on objects of P, both functors L → A and L → A ′ are fully-faithful,
factor through the projective objects, and induce fully-faithful functors sL → sA and
sL → sA ′. By Corollary 2.1.37, the image of sL in sA or sA ′ consists of fibrant-
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cofibrant objects. We thusly obtain a diagram

N(sA )[W−1] N(sA ′)[W−1]

N(sL )[H−1]

≃ ≃
(2.33)

in which [H−1] denotes the localization at simplicial homotopy equivalences. This com-
pletes the proof.

Corollary 2.1.39 (Universal property of D⩽0(A )). (i) There is an equivalence

D⩽0(A ) ≃ FunΠ(Pop,∞Grpd) = sInd(N(P)). (2.34)

(ii) Let D be any cocomplete ∞-category. Composition with N(P)→ D⩽0(A ) induces
an equivalence of ∞-categories

FunL(D⩽0(A ),D)
∼−→ FunΠ(N(P),D), (2.35)

where FunL denotes the full subcategory spanned by colimit-preserving functors.

Proof. (i): Combine Proposition 2.1.35 and Proposition 2.1.36. (ii): Combine (i) and
[Lur09b, Corollary 5.5.8.15(c)].

Definition 2.1.40. [Lur17, Definition 5.5.7.1]

(i) Let C be an ∞-category admitting filtered colimits. An object C ∈ C is called
compact if Hom(C,−) commutes with filtered colimits. We let C ω ⊆ C be the full
subcategory spanned by compact objects.

(ii) An ∞-category C is called compactly generated if there exists a small category C0

admitting finite colimits, and an equivalence of ∞-categories Ind(C0) ≃ C .

Proposition 2.1.41. [Lur09b, §5.5.7] Let C be a compactly generated ∞-category. Then
the full subcategory C ω ⊆ C is essentially small, admits finite colimits, and the inclusion
induces an equivalence of ∞-categories Ind(C ω)

∼−→ C .

Lemma 2.1.42. Let C be a compactly generated ∞-category. Then for any regular car-
dinal κ, one has that κ-small limits commute with κ-filtered colimits.

Proof. This is well-known, but we include the proof for completeness. Let p : I × J → C
be a diagram where I is κ-filtered and J is κ-small. We need to check that the canonical
morphism

colim
I

lim
J
p→ lim

J
colim
I

p (2.36)

is an equivalence. This can be checked after applying Map(C,−) for each C ∈ C ω, reduc-
ing the proof of the Lemma to the case when C =∞Grpd, which is [Lur09b, Proposition
5.3.3.3].

Lemma 2.1.43. Let F : C ⇆ D : G be an adjunction between compactly generated
∞-categories. Then the right adjoint G preserves filtered colimits if and only if the left
adjoint F preserves compact objects.
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Proof. This is again well-known, but we include the proof for completeness. The only
if direction is clear by adjunction. For the if direction, suppose F preserves compact
objects. Let p : I → D be a filtered diagram. We need to check that the canonical
morphism

φ : colim
I

G ◦ p→ Gcolim
I

p (2.37)

is an equivalence in C . This can be checked after applying Map(C,−) for each C ∈ C ω.
For such C then Map(C,φ) is seen to be an equivalence, by adjunction and the fact that
F preserves compact objects.

Proposition 2.1.44 (Compact generation of D⩽0(A )). (i) The category D⩽0(A ) is
compactly generated.

(ii) Let j : N(P) → D⩽0(A ) be the inclusion. An object C ∈ D⩽0(A ) is compact if
and only if the following holds: There exists a finite diagram p : K → P such that
C is a retract of colim j ◦ p.

Proof. By [Lur09b, Proposition 5.3.5.12], the ∞-category PSh(N(P)) is compactly gen-
erated and the compact objects admit precisely the description as in (ii), c.f. [Lur09b,
Proposition 5.3.4.17]. Now, sInd(N(P)) is a localization of PSh(N(P)), and the inclu-
sion sInd(N(P)) ↪→ PSh(N(P)) preserves sifted colimits3, in particular filtered colimits.
This implies that the left adjoint (the localization) preserves compact objects, giving both
(i) and (ii).

Remark 2.1.45. Because compact objects are stable under finite colimits and retracts,
we arrive at the following alternative description of D⩽0(A )ω: it is the full subcategory
generated under cones, suspensions and retracts by N(P) ⊆ D⩽0(A ). One might call
these “connective P-perfect complexes”.

Example 2.1.46. Let K be a non-trivially valued non-Archimdedean field, let A =
CBornK and P = {c0(S)}S for S ranging over (small) sets. We obtain

D⩽0(CBornK) ≃ sInd(N({c0(S)}S)). (2.38)

Definition 2.1.47. Let C be a pointed∞-category with finite limits. We let Sp(C ) denote
the category of spectrum objects of C . It is the limit

Sp(C ) := lim
(
C

Ω←− C
Ω←− C ← · · ·

)
(2.39)

computed in Cat∞. The category Sp of spectra is defined as Sp := Sp(∞Grpd∗) where
∞Grpd∗ :=∞Grpd∗/ denotes pointed ∞-groupoids.

Lemma 2.1.48. (i) The t-structure on D(A ) is both left and right complete;

(ii) There are t-exact equivalences of ∞-categories

D(A ) ≃ Sp(D⩽0(A )) ≃ Sp(sInd(N(P))). (2.40)

(iii) There is a t-exact equivalence of ∞-categories

Sp(sInd(N(P))) ≃ FunΠ(N(P)op,Sp). (2.41)

3This is obvious since sInd is formed by freely adjoining sifted colimits, whereas PSh is formed by
freely adjoining all colimits.
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(iv) There is an equivalence of ∞-categories

D⩽0(A )⊗ Sp ≃ D(A ), (2.42)

where the tensor product on the left is the Lurie tensor product on PrL.

Proof. (i): Our working assumption that A is quasi-elementary implies that products in
A are exact and coproducts in A are (strongly) exact, c.f [Sch99, Proposition 2.1.15].
Hence both products and coproducts are t-exact in D(A ). From this it follows by [Lur17,
Proposition 1.2.1.19] and its dual that D(A ) is left and right t-complete.

(ii): The equivalence D(A ) ≃ Sp(D⩽0(A )) is an immediate consequence of right-
completeness of the t-structure, established in (i).

(iii): This is essentially [Lur11, Remark 1.2], but let us reproduce the proof here for
convenience. Because the endofunctor Ω of ∞Grpd∗ commutes with (finite) products, we
can regard Sp as the limit of the tower

∞Grpd∗
Ω←−∞Grpd∗

Ω←−∞Grpd∗
Ω←− . . . (2.43)

computed in the ∞-category CatΠ∞ of ∞-categories admitting finite products, with finite-
product preserving functors. Consequently we obtain an equivalence

FunΠ(N(P)op,Sp) ≃ lim
Ω

FunΠ(N(P)op,∞Grpd∗) (2.44)

and we note that there is a canonical equivalence

FunΠ(N(P)op,∞Grpd∗) ≃ FunΠ(N(P)op,∞Grpd)∗/ (2.45)

Hence the conclusion will follow if we can show that sInd(N(P)) was already pointed.
This follows from the fact that the Yoneda embedding j : N(P) ↪→ sInd(N(P)) preserves
finite coproducts and all limits [Lur09b, Proposition 5.5.8.10], andN(P) has a zero object.

(iv): Follows from (i), c.f. [Lur17, Example 4.8.1.23] (note that D⩽0(A ) is already
pointed).

Proposition 2.1.49 (Compact generation of D(A )). (i) The∞-category D(A ) is com-
pactly generated.

(ii) Let j : N(P) ↪→ D(A ) be the inclusion of N(P) in degree 0. An object C ∈ D(A )
is compact if and only if the following holds: There exists n ⩾ 0 and a finite diagram
p : K →P such that C is a retract of colim Ωnj ◦ p.

Proof. Let us temporarily set C := D⩽0(A ). By Proposition 2.1.44, C is compactly
generated, so by Lemma 2.1.42 finite limits commute with filtered colimits in C . In
particular the loops functor Ω : C → C commutes with filtered colimits. Therefore we
can view

C
Ω←− C

Ω←− C
Ω←− · · · (2.46)

as a diagram in the ∞-category PrRω of compactly generated ∞-categories, with filtered-
colimit preserving, right adjoint functors [Lur09b, Definition 5.5.7.5]. Now [Lur09b,
Proposition 5.5.7.6] says that PrRω is closed under limits in Cat∞, giving (i).

(ii): We examine the proof of loc. cit.. Let Ω∞−n : Sp(C ) → C be the projection to
the nth component, which by (i) is a morphism in PrRω . Hence the left adjoint Σ∞−n :
C → Sp(C ) preserves compact objects. Together with Proposition 2.1.44 this implies that
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all objects as in (ii) are indeed compact. Moreover, [Lur09b, Lemma 6.3.3.6] implies that
the identity functor on Sp(C ) can be written as

id ≃ colim
n

Σ∞−nΩ∞−n, (2.47)

so Sp(C ) is generated under filtered colimits by the essential images of the Σ∞−n. Since
C is generated under filtered colimits by objects as in Proposition 2.1.44(ii), we see that
objects as in (ii) generate Sp(C ) under filtered colimits. A retract argument then shows
that every compact object has the form as in (ii).

Proposition 2.1.50 (Universal property of D(A )). (i) Let D be any stable presentable
∞-category. There is an equivalence of ∞-categories

FunL(D(A ),D) ≃ Fun⨿(N(P),D). (2.48)

where FunL denotes the colimit-preserving functors and Fun⨿ denotes the finite-
coproduct preserving functors.

(ii) Let D be any stable presentable ∞-category with t-structure (D⩽0,D⩾0). There is
an equivalence of ∞-categories

Fun′(D(A ),D) ≃ Fun⨿(N(P),D⩽0). (2.49)

where Fun′ denotes the colimit-preserving and right t-exact functors.

Proof. (i): By Proposition 2.1.50 we have D⩽0(A ) ⊗ Sp ≃ D(A ) computed in the sym-
metric monoidal ∞-category PrL. Now FunL(−,−) is the internal Hom in PrL. Hence

FunL(D⩽0(A )⊗ Sp,D) ≃ FunL(D⩽0(A ),FunL(Sp,D)), (2.50)

but since D is stable and presentable we have FunL(Sp,D) ≃ D , proving (i). (ii): Clear
from (i).

Remark 2.1.51. As in Remark 2.1.45, we arrive at the following alternative description
of D(A )ω: it is the full subcategory generated under cones, shifts and retracts by N(P) ⊆
D(A ). One might call these “P-perfect complexes”.

2.1.3 Monoidal structure on D(A )

In this section we continue with the same assumptions as in §2.1.2 but further assume
that:

⋆ A is endowed with a closed symmetric monoidal structure (A ,⊗,Hom);

⋆ the monoidal structure on A restricts to P;

⋆ every object of P is flat.

Example 2.1.52. Let K be a non-trivially valued non-Archimedean field, let

A = (CBornK ,“⊗K ,HomK), (2.51)

and P = {c0(S)}S for S ranging over (small) sets. There are canonical isomorphisms

c0(S)“⊗Kc0(S′)
∼−→ c0(S × S′), (2.52)

so that P ⊆ A satisfies all the above assumptions.
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Kelly has proved the following (the same result also holds for unbounded complexes, but
for this section we only need the result in the connective case):

Theorem 2.1.53. [Kel24, Theorem 4.69] Under the above assumptions. The projec-
tive model structure on Ch⩽0(A ) is monoidal, i.e., (Ch⩽0(A ),⊗) is a monoidal model
category.

As a consequence of the dictionary between model categories and ∞-categories we
obtain the following:

Corollary 2.1.54. The ∞-category D⩽0(A ) is presentably symmetric monoidal, when
endowed with the derived tensor product.

Theorem 2.1.55. There exists a symmetric monoidal structure ⊗Day (called Day convo-
lution) on sInd(N(P)) which is characterised up to equivalence by the following properties:

(i) The Yoneda embedding j : N(P) ↪→ sInd(N(P)) extends to a symmetric monoidal
functor;

(ii) ⊗Day commutes with colimits separately in each variable.

Proof. The Theorem with sifted colimits in place of all colimits in (ii) is [Lur17, Propo-
sition 4.8.1.10], taking K = ∅ and K′ to be the collection of sifted simplicial sets, in the
notations of loc. cit.. To get the full statement of (ii), one argues mutandis mutatis as
in [Lur17, Proposition 4.8.1.14], replacing the use of [Lur09b, Proposition 5.5.1.9] with
[Lur09b, Remark 5.5.8.16(3)].

Corollary 2.1.56. (i) The equivalence of Corollary 2.1.39(i) upgrades to an equiva-
lence of presentably symmetric monoidal ∞-categories:

(sInd(N(P)),⊗Day)
∼−→ (D⩽0(A ),⊗L). (2.53)

(ii) Let D be any symmetric monoidal ∞-category such that D is cocomplete and the
tensor product D × D → D preserves colimits separately in each variable. Then
there is an equivalence of ∞-categories

FunL,⊗(D⩽0(A ),D) ≃ Fun⨿,⊗(N(P),D), (2.54)

where FunL,⊗ (resp. FunΠ,⊗) denotes colimit-preserving (resp. finite product pre-
serving) symmetric monoidal functors.

Proof. (i): Both tensor products preserve colimits (separately in each variable) and restrict
to the symmetric monoidal structure on N(P). (ii): Follows from (i) using [Lur09b,
Remark 5.5.8.16(3)].

Proposition 2.1.57. There is a unique (up to equivalence) symmetric monoidal structure
⊗L on D(A ) with the following properties:

(i) The inclusion D⩽0(A ) ↪→ D(A ) extends to a symmetric monoidal functor;

(ii) ⊗L commutes with colimits separately in each variable. In particular D(A ) is pre-
sentably symmetric monoidal.
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Proof. This follows immediately by interpreting the formula

D⩽0(A )⊗ Sp ≃ D(A ) (2.55)

coming from Proposition 2.1.50(iv), as a tensor product of commutative algebra objects in
PrL.

Because D(A ) is presentably symmetric monoidal, it is in particular closed symmetric
monoidal. We write

RHomA (−,−) : D(A )op ×D(A )→ D(A ) (2.56)

for the internal Hom-bifunctor on D(A ).

Lemma 2.1.58. (i) If C•, C ′,• are compact objects of D(A ), then so is C• ⊗L C ′,•.

(ii) If C• ∈ D(A ) is compact then the functor RHomA (C•,−) commutes with filtered
colimits.

Proof. (i): By Proposition 2.1.57, the derived tensor product restricts to the ordinary
tensor product on N(P), and commutes with colimits (in particular suspensions and
hence loops since D is stable) separately in each variable. Therefore the claim follows
from the explicit description of Proposition 2.1.49(ii). (ii): By Lemma 2.1.43, this is
immediate from (i).

Remark 2.1.59. Using Proposition 2.1.57 together the model stucture on Ch(A ) and
the formalism of bounded resolving classes (c.f. [Kel24, §2.3.2], [Spa88]) gives a way to
calculate derived tensor products:

⋆ If M•, N• ∈ Ch−(A ), then one can find a degreewise projective complex P • with an
acyclic fibration P • →M•. Then P • ⊗N• ∼−→M• ⊗L N• in D(A ).

⋆ If M•, N• ∈ D(A ), then there exists a direct system {P •
n}n⩾−1 of bounded-above

degreewise projective complexes, with a system of acyclic fibrations P •
n → τ⩽nM•.

Put P • := colimn⩾−1 P
•
n . Then

M• ⊗L N• ≃ colim
n,m⩾−1

(P •
n ⊗ τ⩽mN•) ≃ P • ⊗N•. (2.57)

2.2 Monads and descent

I assume that the reader is familiar with the notion of a monad in ordinary category
theory, and a module over it4. In short, given a an ordinary category C , the category
End(C ) of endofunctors is naturally a monoidal category via composition of functors.
Monoids in End(C ) are known as monads. To give such an object is the same as giving
an endofunctor T together with multiplication and unit transformations µ : T 2 → T and
η : id → T satisfying diagrams expressing strict associativity and unitality. Evaluation
on objects gives an action End(C )×C → C of this monoidal category on C . The notion
of a module over an algebra object makes sense in this generality.5 In particular, given

4In this paper we prefer to use the terminology of modules over monads rather than algebras over
monads.

5That is, whenever one has a monoidal category D acting on a category C , one can consider, for any
algebra object T ∈ D , the category ModT C of module objects in C over T . In particular, it is not
necessary for the “module” and the “algebra” to belong to the same category.
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any monad T ∈ C , we obtain the category ModT C of modules over the monad. To
give such an object is the same as giving an object M ∈ C together with an action
morphism TM → M satisfying a diagram expressing the module axiom. The definition
of a comonad, and a comodule over a comonad, is obtained by formally dualizing these
definitions.

An abundant source of (co)monads in ordinary category theory, is from adjunctions.
Given an adjunction F : D ⇆ C : G, the endofunctor FG on C naturally acquires the
structure of a monad with unit η : id → FG acquired from the unit transformation and
multiplication µ : FGFG → FG acquired from the counit transformation ε : GF → id.

The functor G canonically factors through the forgetful functor as C
K−→ ModFG D → D .

The functor K is called the comparison functor, and the classical theorem of Barr-Beck
gives neccesary and sufficient conditions for K to be an equivalence, in which case we
say F ⊣ G is monadic. That is, G should be conservative and preserve certain kinds of
colimits, called G-split coequalizers.6

The comonadicity of adjunctions is related to descent theory via the classical Bénabou-
Roubaud theorem, which roughly says that, under a hypothesis related to base-change,
(which is sometimes called the Beck-Chevalley condition), descent is “the same” as the
comonadicity of the push-pull adjunction.

In this subsection, I will attempt, in analogy with this story, to describe how modules
over a homotopy-coherent monad are constructed in higher category theory. I will also
record some results about the relation between monads and descent theory.

2.2.1 What are modules over a homotopy-coherent monad?

I am including this section for completeness, but I cannot pretend to give a better intro-
duction than the notes of Lukas Brantner [Bra24], which were enormously helpful for me
when learning this. We recall that ∞-categories are built out of the category sSet sim-
plicial sets. More precisely, they are the fibrant objects in the Joyal model structure on
sSet [Lur09b, §2.2.5]. By using the Cartesian-closed structure7 on sSet, one can, to each
∞-category C , define another ∞-category End(C ) := C C . By again using the Cartesian-
closed structure on sSet one obtains a diagram N(∆op)→ sSet sending [n] 7→ End(C )n,8,
c.f. [Bra24, Definition 2.46]. By the straightening/unstraightening equivalence9 this can
be equivalently viewed as a coCartesian fibration10 End(C )⊗ → N(∆op). Here End(C )⊗

is defined by unstraightening applied to the previous construction. This fibration turns
out to be a monoidal ∞-category, i.e., it is an inner fibration11 of simplicial sets satisfying
the Segal property.12 When referring to this monoidal ∞-category we may suppress the
implicit fibration or even also the ⊗.

Definition 2.2.1. [Lur09a, Definition 1.1.14, Definition 3.1.3] A homotopy-coherent
monad, which we will often just call a monad, is defined to be an algebra object in

6Of course, the Barr-Beck theorem also has a formal dual for comonadic adjunctions.
7That is, given X,Y ∈ sSet one may define Y X ∈ sSet by (Y X)n := MapsSet(∆

n ×X,Y ), and there
is an adjunction (−)×X ⊣ (−)X .

8So that [0] 7→ [0] ∈ sSet.
9Straightening/unstraightening is the common name given to the Grothendieck construction for (∞, 1)

categories [Lur09b, §3.2]. It asserts that there is a Quillen equivalence between the category of simplicial
functors, and coCartesian fibrations.

10A coCartesian fibration is the higher categorical counterpart of a Grothendieck op-fibration, see
[Lur09b, Definition 2.4.2.1].

11A morphism of simplicial sets is called an inner fibration if it has the left lifting property against
inclusions of inner horns.

12For details we direct the reader to [Lur17, Ch. 2] and [Lur09a, Ch. 1].
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the monoidal ∞-category End(C )⊗. This means that it is a section of the fibration
End(C )⊗ → N(∆op) sending the inert morphisms13 in N(∆op) to coCartesian edges.

Informally, a homotopy-coherent monad is an endofunctor T ∈ End(C ) equipped with
morphisms µ : T 2 → T and η : id → T which are associative and unital up to coherent
homotopy.

In higher-category theory, the action of the monoidal ∞-category End(C )⊗ on C is
captured via the definition of a left-tensored ∞-category [Lur09a, Definition 2.1.1]. In this
situation this means the following, c.f. [Lur09a, Proposition 3.1.2]. We will construct an
∞-category C⊗ equipped with a coCartesian fibration C⊗ → N(∆op) and a fibration14

C⊗ → End(C )⊗ over N(∆op) such that, for every n ⩾ 0 the inclusion {n} → [n] induces
an equivalence C⊗

[n]

∼−→ End(C )⊗[n] × C ; here (−)[n] denotes the fiber over [n] ∈ ∆op. In

order to define C⊗ we note that the Cartesian-closed structure on sSet gives a diagram
N(∆op) → sSet sending [n] 7→ End(C )n × C . By using the morphism C → [0] to the
terminal object and unstraightening we obtain∞-category C⊗ equipped with the desired
fibration C⊗ → End(C )⊗ over N(∆op).

Definition 2.2.2. [Lur09a, Definition 2.1.4, Definition 3.1.3] Fix a homotopy-coherent
monad T , viewed as a section T : N(∆op) → End(C )⊗. A module over T is a section
M : N(∆op)→ C⊗ such that:

⋆ The composite N(∆op)→ C⊗ → End(C )⊗ is equivalent to T ,

⋆ M sends edges corresponding to convex morphisms15 α : [m] → [n] in ∆ such that
α(m) = n, to coCartesian edges for the fibration C⊗ → N(∆op).

Informally [Lur09a, Remark 3.1.4] a module M over a homotopy-coherent monad is
an object M ∈ C equipped with a morphism TM → M which satisfies a version of the
module axiom up to coherent homotopy.

We would like to produce homotopy-coherent monads from adjunctions. The usual
definition of an adjunction in higher category theory uses not much data. That is, an
adjunction consists of a pair of functors F : D ⇆ C : G of ∞-categories together with a
unit η : id → FG, a counit ε : FG → id and a 2-simplex expressing the zig-zag identity
for the composite F → FGF → F , c.f. [Lur18a, Tag 02EJ]. A priori, it is not clear
how to produce enough coherences in order to give the endofunctor FG the structure of a
homotopy-coherent monad. This motivates the definition of the∞-category of adjunction
data [Lur09a, §3.2]. The ∞-category ADat(D ,C ) consists of certain sections of a certain
fibration over a version of ∆op labelled by two colours; we direct the reader to [Lur09a,
Definition 3.2.6] and [Bra24, Lecture 3] for details. This category keeps track of all the
possible coherences implicit in an adjunction, so that every object of ADat(D ,C ) gives
rise to a homotopy-coherent monad on C , c.f. [Lur09a, Remark 3.2.7]. There is a functor
ADat(D ,C ) → FunL(D ,C ) from the ∞-category of adjunction data to the category
of left-adjoint functors, in the previous sense. By Lurie’s Theorem on the existence of
adjunction data [Lur09a, Theorem 3.2.10], this is a trivial Kan fibration. That is, given
any left-adjoint functor F : D → C one can, (up to contractible choice), choose a right
adjoint G such that the endofunctor FG acquires the structure of a homotopy-coherent
monad. Such a functor G can then be factored canonically through the forgetful functor

as C
K−→ ModFG D → D , c.f. [Lur17, §4.7]. Let us call the functor K the comparison

functor.

13See [Bra24, Lecture 2, Definition 2.48].
14In the Joyal model structure.
15See [Lur09a, Definition 1.1.7], and also [Bra24, Lecture 2, Definition 2.54].
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Theorem 2.2.3 (Barr–Beck–Lurie). [Lur17, §4.7] With notations as above. Assume
that G is conservative and that G preserves geometric realizations of G-split simplicial
objects16. Then the comparison functor K is an equivalence.

The equivalence of categories in the Barr–Beck–Lurie theorem can be made more
explicit in the following way:

Lemma 2.2.4. (i) Let F : C ⇆ D : G be a comonadic adjunction of ∞-categories.
The quasi-inverse to the comparison equivalence C

∼−→ ComodFG D , is given on
objects by the formula

M 7→ lim
[n]∈∆

G(FG)nM. (2.58)

(ii) Let G : D ⇆ C : F be a monadic adjunction of ∞-categories. The quasi-inverse to
the comparison equivalence C ≃ ModFG D , is given on objects by the formula

M 7→ colim
[n]∈∆op

G(FG)nM. (2.59)

Proof. We will prove (ii), the proof of (i) is similar. We examine the equivalence of
categories implicit in the proof of the Barr-Beck-Lurie theorem. Let us temporarily write
T for the monad FG. The Barr-Beck-Lurie equivalence arises from an adjunction

R : C ⇆ ModT (D) : L (2.60)

in which R satisfies
ForgetT ◦R ≃ F. (2.61)

We would like to calculate the value of L on objects. Every M ∈ ModT (D) is the colimit
of simplicial object

M ≃ colim
[n]∈∆op

Tn+1M (2.62)

in ModT (D). Since L is a left adjoint, it commutes with colimits, so it suffices to know
the value of L on free T -modules. However, by passing to left adjoints in (2.61), we know
that

L ◦ FreeT ≃ G, (2.63)

so LM ≃ colim[n]∈∆op GTnM = colim[n]∈∆op G(FG)nM . This proves (ii).

2.2.2 Barr–Beck–Lurie in families

In this section we present a generalization of the result of [GHK22, Proposition 4.4.5]
which is adapted to our setting.

Proposition 2.2.5. Given a diagram

C D

B

U

p r
(2.64)

in Cat∞ such that:

(i) p and r are coCartesian fibrations and U preserves coCartesian edges;

16See [Lur17, §4.7].
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(ii) U has a left adjoint F : D → C such that pF ≃ r;

(iii) The adjunction F ⊣ U restricts in each fiber to an adjunction Fb ⊣ Ub. For all
b ∈ B, the functor Ub is conservative, and Cb admits colimits of Ub-split simplicial
objects, which Ub preserves.

(iv) For any edge e : b → b′ in B, the coCartesian covariant transport e! : Cb → Cb′
preserves geometric realizations of Ub-split simplicial objects.

Then, the adjunction F ⊣ U is monadic.

Remark 2.2.6. In view of the Barr–Beck–Lurie theorem, condition (iii) in Proposition
2.2.5 is equivalent to:

(iii)′ The adjunction F ⊣ U restricts in each fiber to a monadic adjunction Fb ⊣ Ub.

Proof of Proposition 2.2.5. We verify the conditions of the Barr–Beck–Lurie theorem [Lur17,
Theorem 4.7.3.5].

First we show that U is conservative. We can argue in exactly the same way as
[GHK22, Proposition 4.4.5]. Suppose that f : c → c′ is a morphism in C such that Uf
is an equivalence in D . Then e := qUf ≃ pf is an equivalence in B. One can factor

f as c
φ−→ e!c

f ′

−→ c′ where φ is a coCartesian lift of e and f ′ is a morphism in the fiber
Cb′ above b′ := p(c′). Since φ is coCartesian lift of an equivalence, it is an equivalence.
Because of the fiberwise monadicity assumption (iii), f ′ is an equivalence. Therefore f is
an equivalence and U is conservative.

Now let us show that C admits and U preserves colimits of U -split simplicial objects.

Let q : ∆op → C be a U -split simplicial object, so that Uq extends to a diagram ›Uq :
∆op

−∞ → D . Let f : ∆op
−∞ → B be the underlying diagram in B. There is a morphism

∆1 ×∆op
−∞ → ∆op

−∞ (2.65)

which is the identity on {0}×∆op
−∞ and carries {1}×∆op

−∞ to [−1] ∈ ∆op
−∞. It sends each

horizontal morphism {0} × [n]→ {1} × [n] to the unique morphism [n]→ [−1]. Consider
the composite

P : ∆1 ×∆op
−∞ → ∆op

−∞
f−→ B. (2.66)

Now we will take a coCartesian lifts, using the exponentiation for coCartesian fibrations
[Lur18a, Tag 01VG].

⋆ Let Q be a coCartesian lift of P |∆1×∆op to C . Then Q is a natural transformation
between q and a morphism q′ : ∆op → Cb, where b is the image under f of [−1] ∈
∆op

−∞.

⋆ Let ŨQ be a coCartesian lift of P to D . Then ŨQ is a natural transformation

between ›Uq and a morphism Ũq′ : ∆op
−∞ → Cb.

These natural transformations Q and ŨQ are uniquely characterised by the property that
their components are coCartesian edges [Lur18a, Tag 01VG]. Because of the assumption

(i) that U preserves coCartesian edges, this unicity implies that UQ ≃ ŨQ
∣∣∣
∆1×∆op

. In

particular Uq′ : ∆op → Cb extends to the split simplicial object Ũq′ : ∆op
−∞ → Cb. By the

fiberwise monadicity assumption (iii), this implies that q′ extends to a colimit diagram
q′ : (∆op)▷ → Cb such that Uq′ is also a colimit diagram. By assumption (iv) and [Lur09b,
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Proposition 4.3.1.10] it then follows that q′ (resp. Uq′), when regarded as a diagram in
C (resp. D), is a p-colimit diagram (resp. r-colimit diagram). Now we can argue as in
[Lur09b, Corollary 4.3.1.11]. We have a commutative diagram

(∆1 ×∆op)
∐

{1}×∆op({1} × (∆op)▷) C

(∆1 ×∆op)▷ B

(Q,q′)

ps

( f |(∆op)▷ )◦π

(2.67)

in which π : (∆1 × ∆op)▷ → (∆op)▷ = ∆op
+ ⊆ ∆op

−∞ denotes the morphism which is the
identity on {0} ×∆op and which carries ({1} ×∆op)▷ to the cone point. Because the left
map is an inner fibration there exists a lift s as indicated by the dashed arrow. Consider
now the map ∆1 × (∆op)▷ → (∆1 ×∆op)▷ which is the identity on ∆1 ×∆op and carries
the other vertices of ∆1 × (∆op)▷ to the cone point. Let Q denote the composition

∆1 × (∆op)▷ → (∆1 ×∆op)▷
s−→ C (2.68)

and define q := Q
∣∣
{0}×(∆op)▷

. Then Q is a natural transformation from q to q′ which

is componentwise coCartesian. Then [Lur09b, Proposition 4.3.1.9] implies that q is a
p-colimit diagram which fits into the diagram

∆op C

(∆op)▷ B

q

pq

f |(∆op)▷

(2.69)

By assumption (i), UQ is a natural transformation from Uq to Uq′ which is componentwise
coCartesian. Hence [Lur09b, Proposition 4.3.1.9] implies that Uq is an r-colimit diagram.
The underlying diagram f |(∆op)▷ of q in B extends to the split simplicial diagram f and

hence admits a colimit in B. Hence [Lur09b, Proposition 4.3.1.5(2)] implies that q and Uq
are colimit diagrams in C and D respectively. Hence C admits and U preserves geometric
realizations of U -split simplicial objects.

Corollary 2.2.7. Let B be an ∞-category and let η : F → G be a natural transformation
of functors F,G : B → Cat∞. Assume that:

(i) For each b ∈ B the functor ηb : F (b)→ G(b) admits a left adjoint νb;

(ii) For each b ∈ B, the functor ηb is conservative, and F (b) admits colimits of ηb-split
simplicial objects, which ηb preserves;

(iii) For any edge e : b → b′ in B, the functor F (e) : F (b) → F (b′) preserves geometric
realizations of ηb-split simplicial objects.

Then there exists a functor H : B → Cat∞ equipped with a natural equivalence λ : F
∼−→ H

and a natural transformation µ : H → G such that:

(i) There is an equivalence µ ◦ λ ≃ η;
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(ii) Set Tb := ηbνb. Then for each b ∈ B one has H(b) = ModTb
F (b) and

F (b)
≃λ(b)−−−−→ H(b)

µ(b)−−→ G(b) (2.70)

identifies with the factorization of η(b) as the comparison functor followed by the
forgetful functor.

Proof. This follows from Proposition 2.2.5 and straightening. Strictly speaking, an appli-
cation of (the dual of) [Lur17, Proposition 7.3.2.6] is required.

2.2.3 Noncommutative notion of descendability

In this section we present a mild generalization of the results of [Mat16]. Let V be a
a presentably symmetric monoidal stable ∞-category. Let Alg(V ) be the category of
associative algebra objects in V . The constructions in this section are phrased in terms
of left modules, but have obvious counterparts for right modules. As usual, for an algebra
object A ∈ Alg(V ), we denote by LModA := LModA V the ∞-category of left module
objects over A [Lur17, §4.2]. Let f# : A → B be a morphism in Alg(V ). We obtain a
forgetful functor

f∗ : LModB → LModA . (2.71)

By [Lur17, Corollary 4.2.3.2], there is a functor Alg(V )op → Cat∞ which sends A 7→
LModA and each f# : A→ B to the forgetful functor f∗.

The functor f∗ has a left adjoint by the following construction. We may regard B as
an object of B BModB , the category of B-B bimodule objects in V . (In this section, we
will always regard bimodule objects as a monoidal category with respect to convolution
[Lur17, §4.4.3]). There is a functor

B BModB →B BModA ≃ FunLV (LModA,LModB), (2.72)

the image of B under this composite is the left adjoint f∗ to f∗. By [Lur17, Proposition
4.6.2.17] the formation of these pullback functors can be arranged in a functorial way.
Accordingly we obtain a comonad f∗f∗ = B ⊗A − on LModB .

Definition 2.2.8. With notations as above. We let ⟨B⟩ denote smallest full subcategory of

A BModA which contains B and is stable under finite (co)limits, retracts, and convolution.
We say that f# : A→ B is descendable if A ∈ ⟨B⟩.

Lemma 2.2.9. Suppose that f# : A→ B is descendable. Then the adjunction f∗ ⊣ f∗ is
comonadic.

Before the proof of this Lemma we recall some properties of Pro- and Ind-objects.

Definition 2.2.10. [Mat16, §3] Let C be an ∞-category with finite limits and colimits.
Let Ind(C ) and Pro(C ) := Ind(C op)op be the Pro- and Ind-categories of C , respectively.

(i) An object M ∈ Ind(C ) is called a constant Ind-object of C if it belongs to the
essential image of the Yoneda embedding C → Ind(C ).

(ii) An object M ∈ Pro(C ) is called a constant Pro-object of C if it belongs to the
essential image of the Yoneda embedding C → Pro(C ).

Lemma 2.2.11. [Mat16, §3]. Let C be an ∞-category with finite limits and colimits.
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(i) Let p : I → C be a filtered diagram. The following are equivalent:

(a) The object “colim”p ∈ Ind(C ) is a constant Ind-object;

(b) For every ∞-category D and every functor F : C → D which preserves finite
colimits, the colimit of p is preserved by F .

(ii) Let p : I → C be a cofiltered diagram. The following are equivalent:

(a) The object “lim”p ∈ Pro(C ) is a constant Pro-object;

(b) For every ∞-category D and every functor F : C → D which preserves finite
limits, the limit of p is preserved by F .

Example 2.2.12. [Mat16, Example 3.11]. Let C be an ∞-category with finite limits and
colimits.

(i) If M• is a split simplicial object of C , then the system of its n-skeleta skn(M•) :=
colim[m]∈∆op

⩽n
Mm forms a constant Ind-object with colimn skn(M•) = colim[m]∈∆op M•.

(ii) If M• is a split cosimplicial object of C , then the system of its partial totalizations
Totn(M•) := lim[m]∈∆⩽n

Mm forms a constant Pro-object with limn Totn(M•) =
lim[m]∈∆M

•.

Proof of Lemma 2.2.9. This is essentially the same as [Man22, Proposition 2.6.3]. We
check the hypotheses of the Barr–Beck–Lurie theorem. Let M• ∈ LModA be a f∗-split
cosimplicial object. In particular the Tot-tower of f∗f

∗M• = B ⊗A M• is a constant
Pro-object. It follows (using that V is stable) that the Tot-tower of N ⊗AM• is constant
for every N ∈ ⟨B⟩. By taking N = A ∈ ⟨B⟩ one deduces that the Tot-tower of M• is
a constant Pro-object. In this case it is clear that f∗ commutes with the totalization of
M•: as the relevant categories are stable, f∗ preserves finite limits.

It remains to check that f∗ is conservative. Suppose that f∗M ≃ 0, then f∗f
∗M =

B ⊗A M ≃ 0 and hence N ⊗A M ≃ 0 for every N ∈ ⟨B⟩. Taking N = A ∈ ⟨B⟩ then
implies that M ≃ 0.

Now let A• be an augmented cosimplicial object in Alg(V ). We obtain a functor

N(∆+)→ Cat∞ : [n] 7→ LModAn , (2.73)

which sends every morphism [m] → [n] in ∆+ to the corresponding pullback functor
LModAm → LModAn defined as in the preceding section. In the next definition we will
use the following notation. For each [n] ∈ ∆+ we denote by d0 the injective morphism
d0 : [n] ↪→ [0]⋆ [n] ≃ [n+1] which omits 0 from its image. For any morphism α : [m]→ [n]
in ∆+ there is an obvious cosimplicial morphism α′ : [m+1]→ [n+1] such that α′d0 = d0α.

Definition 2.2.13. We say that A• satisfies the Beck-Chevalley condition if for every
map α : [m]→ [n] in ∆+, the natural morphism

An ⊗Am Am+1 → An+1 (2.74)

is an equivalence in An BModAm+1 . Here, the algebra morphisms Am → Am+1 and An →
An+1 are induced by d0. The morphisms Am → An and Am+1 → An+1 are induced by α
and α′.
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Lemma 2.2.14. Suppose that A• satisfies the Beck-Chevalley condition and A−1 → A0

is descendable. Then the canonical morphism

LModA−1 → lim
[n]∈∆

LModAn (2.75)

is an equivalence of ∞-categories.

Proof. Follows from Lemma 2.2.9 above and [Lur17, Corollary 4.7.5.3].

Example 2.2.15. Suppose that A→ B is a morphism of commutative algebra objects in
V . Then A⊗B(•+1) is an augmented cosimplicial algebra object which satisfies the Beck–
Chevalley condition. It is obvious that A → B is descendable in the sense of Definition
2.2.8 if and only if A → B is descendable in the sense of Mathew [Mat16, §3.3]. Hence
Lemma 2.2.14 recovers Mathew’s theorem [Mat16, Proposition 3.22].

2.2.4 A way to produce monoids from monads

For an operad O we let CatMonlaxO denote the (∞, 2)-category of O-monoidal categories

with lax O-linear functors [HHLN23, Definition 3.4.1] and CatMonoplaxO denote the (∞, 2)-
category of O-monoidal categories with oplax O-linear functors [HHLN23, Definition
3.4.3].

Let Assoc denote the associative operad [Lur17, Definition 4.1.1.3] and let LM denote
the operad of [Lur17, Notation 4.2.1.6]. Let V be a monoidal (∞, 1)-category which we
identify with the object V → Assoc of CatMonlaxAssoc. By abuse of notation we also identify

V with the object V op → Assocop of CatMonoplaxAssoc .

Definition 2.2.16. (i) The (∞, 2)-category of V -linear categories with lax V -linear
functors is defined to be

LModlax
V := {V } ×CatMonlaxAssoc

CatMonlaxLM. (2.76)

(ii) The (∞, 2)-category of V -linear categories with oplax V -linear functors is defined
to be

LModoplax
V := {V } ×CatMonoplaxAssoc

CatMonoplaxLM . (2.77)

Here is an intuitive description. A V -linear ∞-category is an ∞-category C equipped
with the data of a functor ⊗ : V ×C → C which is unital and associative up to coherent
homotopy. A lax V -linear functor C → D of V -linear ∞-categories C ,D is a functor
F : C → D equipped with the data of morphisms V ⊗ F (M) → F (V ⊗ M), for all
V ∈ V ,M ∈ C , which is unital and associative up to coherent homotopy. Oplax linear
functors are defined similarly but with arrows reversed.

Theorem 2.2.17. [HHLN23, Theorem C] Let LModR,laxV denote the 1-full 2-subcategory

of LModlax
V spanned by those functors which are objectwise right adjoints. Let LModL,oplaxV

denote the 1-full subcategory of LModoplax
V spanned by those functors which are objectwise

left adjoints. Then there is an equivalence of (∞, 2)-categories

LModR,laxV ≃
(

LModL,oplaxV

)(1,2)−op
, (2.78)

obtained by passing to adjoints objectwise (in both directions). Here (1, 2) − op indicates
that the direction of 1- and 2-morphisms are reversed.

37



Topics in derived analytic geometry

Proof. This follows immediately from [HHLN23, Theorem C], taking the operad O in loc.
cit. to be LM and Assoc and then taking the fiber over V 17.

Intuitively, this may be explained as follows. Let C and D be V -linear categories.
Let F : D ⇆ C : G be an adjunction in which the left adjoint F is oplax linear. Let
V ∈ V ,M ∈ C . The desired morphism V ⊗ G(M) → G(V ⊗M) giving the lax linear
structure on G is adjoint to the composite

F (V ⊗G(M))→ V ⊗ FG(M)→ V ⊗M, (2.79)

where the first is from the oplax linear structure on F and the second is induced by the
counit of F ⊣ G. Similarly, a lax linear structure on G determines an oplax linear structure
on F . The Theorem says that these operations give a mutually inverse equivalence of
(∞, 2)-categories.

Lemma 2.2.18. Let us view V as a V -linear category. Then there is an adjunction of
∞-categories

ι : V ⇆ Funlax
V (V ,V ) : κ (2.80)

in which the left adjoint ι sends V 7→ − ⊗ V and the right adjoint κ sends F 7→ F (1V ).
(Note here that the superscript lax stands for lax V -linear functors and not lax monoidal
functors).

Proof. The unit morphism η : id
∼−→ κι is the canonical equivalence id ≃ 1V ⊗ id. The

counit morphism ε : ικ → id is deduced from the lax-linear structure (−) ⊗ F (1V ) →
F (− ⊗ 1V ) ≃ F (−). We check the zig-zag identities. The composite κ → κικ → κ
identifies (objectwise) with F (1V ) ≃ 1V ⊗ F (1V ) → F (1V ⊗ 1V ) ≃ F (1V ) which is an
equivalence because lax V -linear functors satisfy a unitality axiom. It is easy to see that
the composite ι→ ικι→ ι is homotopic to the identity.

Corollary 2.2.19. The functor κ in Lemma 2.2.18 acquires a canonical lax monoidal
structure, for the composition monoidal structure on Funlax

V (V ,V ). Further, there is an
induced adjunction on algebra objects.

Proof. It is clear that ι is strongly monoidal. Therefore κ acquires a canonical lax monoidal
structure by [Lur17, Corollary 7.3.2.7] or [HHLN23, Theorem A].

This Lemma has an obvious oplax version.

Lemma 2.2.20. There is an adjunction of ∞-categories

κ′ : Funoplax
V (V ,V ) ⇆ V : ι′ (2.81)

in which the right adjoint ι′ sends V 7→ − ⊗ V and the left adjoint κ′ sends F 7→ F (1V ).
(Note again here that the superscript oplax stands for oplax V -linear functors and not
oplax monoidal functors). The functor κ′ acquires a canonical oplax monoidal structure,

for the composition monoidal structure on Funoplax
V (V ,V ). Further, there is an induced

adjunction on coalgebra objects.

Now let A ∈ Alg(V ) be an algebra object. Then RModA V is a V -linear category. We
can formulate the following generalization of Lemma 2.2.18.

17I am grateful to Shay Ben-Moshe for explaining this to me.
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Lemma 2.2.21. LetM be a V -linear category. There is an adjunction of ∞-categories

ι : LModAM⇆ Funlax
V (RModA V ,M) : κ (2.82)

in which the underlying object of κ(F ) is F (A) and the left adjoint ι sends M 7→ (V 7→
V ⊗AM).

Proof. The functor κ is explicitly defined as follows. We first note that the construction
of [Lur17, Remark 4.6.2.9] works just as well for lax-linear functors, so that there is a
canonical functor

Funlax
V (RModA V ,M)→ FunV (LModA(RModAV ),LModAM) (2.83)

then evaluation on the object A (considered as a left and right A-module) gives the
required functor κ. The unit morphism id→ κι is the canonical equivalence id ≃ A⊗A id.
The counit morphism κι→ id is the composite

(−)⊗AF (A) ≃
∣∣(−)⊗A⊗•⊗F (A)

∣∣→ ∣∣F (−⊗A⊗•+1)
∣∣→ F

(
|−⊗A⊗•+1|

)
≃ F (−), (2.84)

where we used the bar construction of [Lur17, §4.4.2] and lax linearity of F . It is easy to
see that the composite ι→ ικι→ ι is homotopic to the identity. We check the composite
κ→ κικ→ κ. This identifies with

F (A) ≃ A⊗A F (A) ≃ |A⊗•+1 ⊗ F (A)| → |F (A⊗•+2)| ≃ F (A). (2.85)

The morphism |A⊗•+1 ⊗ F (A)| → |F (A⊗•+2)| is equivalent to 1V ⊗ F (A)→ F (1V ⊗ A)
which is an equivalence by the unitality property of lax V -linear functors.

Specialising to the situation of M = RModA V gives the following.

Corollary 2.2.22. There is an adjunction of ∞-categories

ι : A BModA V ⇆ Funlax
V (RModA V ,RModA V ) : κ (2.86)

in which the left adjoint ι is strongly monoidal and the right adjoint κ is lax monoidal (for
the convolution monoidal structure on bimodules and the composition monoidal structure
on endofunctors). Further, there is an induced adjunction on algebra objects.

Proof. It is well-known that the functor ι is strongly monoidal. Hence κ acquires a canon-
ical lax monoidal structure by [Lur17, Corollary 7.3.2.7] or [HHLN23, Theorem A].

It seems possible that there is an “oplax” version of Corollary 2.2.22 in which A is
replaced with a coalgebra object, and one uses bicomodules instead of bimodules.

Example 2.2.23. Let C be a V -linear category, and let F : RModA V ⇆ C : G be an ad-
junction in which the left adjoint F is V -linear. Then by Theorem 2.2.17 the right adjoint
G acquires a canonical lax V -linear structure, so that the endofunctor GF of RModA V
acquires a canonical lax V -linear structure. By Corollary 2.2.22 the object GF (A) acquires
structure of an A-A bimodule object equipped with a natural transformation

GF (A)⊗A (−)→ GF (−) (2.87)

of endofunctors of RModA V , coming from the counit ικ → id. Further, since GF is a
monad (i.e., an algebra object in endofunctors), Corollary 2.2.22 implies that GF (A) ac-
quires the structure of an algebra object under convolution and the natural transformation
(2.87) is a morphism of monads.
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2.3 Theory of abstract six-functor formalisms

Definition 2.3.1. [Man22, Definition A.5.1] A geometric setup is a pair (C , E) where
C is an ∞-category and E is a collection of morphisms of C such that:

⋆ E contains all equivalences, is stable under composition, and pullbacks of morphisms
in E by arbitrary morphisms of C exist and remain in E.

Remark 2.3.2 (Important remark). Our definition of a geometric setup does not require
E to satisfy the right-cancellation property (which says that E is closed under the forma-
tion of diagonals). In particular, our convention follows [Man22, §A.5] which is different
to [HM24] in this way.

Given a geometric setup one can define an ∞-category Corr(C , E), which can be
described informally as follows [Man22, §A.5].

⋆ The objects of Corr(C , E) are the same as those of C .

⋆ Morphisms X 99K Y of Corr(C , E) are given by spans X
g←− U

f−→ Y with f ∈ E.
The composite of X ← U → Y and Y ← V → Z is given by the composed span
X ← U ← U ×Y V → V → Z.

⋆ Corr(C , E) has a monoidal structure built from the coCartesian monoidal structure
on C op.

A lax-monoidal functor Q : Corr(C , E) → Cat∞, (where the latter is endowed with the
Cartesian monoidal structure), determines functors

g∗ := Q(X
g←− Y = Y ) : Q(X)→ Q(Y ) and

f! := Q(X = X
f−→ Y ) : Q(X)→ Q(Y ) and

⊗X : Q(X)×Q(X)→ Q(X).

(2.88)

Definition 2.3.3. [LZ17, GR17, Man22].

⋆ A six-functor formalism is a lax-monoidal functor18 Q : Corr(C , E) → Cat∞ such
that g∗ and f! admit right adjoints for every morphism g in C and every f ∈ E,
and M ⊗X − admits a right adjoint for every M ∈ Q(X).

⋆ The right adjoints are denoted g∗, f
!, and HomX(M,−), respectively.

Remark 2.3.4. With notations as in Definition 2.3.3. The following basic identities are
valid in any six-functor formalism.

(i) (Projection formula). Let [f : X → Y ] ∈ E. There is a canonical equivalence

f! ⊗Y id ≃ f!(id⊗Xf∗) (2.89)

of functors Q(X)×Q(Y )→ Q(Y ).

(ii) Let M ∈ Q(X) and [f : X → Y ] ∈ E. There is a canonical equivalence

f∗HomX(M,f !(−)) ≃ HomY (f!M,−) (2.90)

of functors Q(Y ) → Q(Y ). This follows by passing to adjoints in the projection
formula (2.89).

18Where Cat∞ is endowed with the Cartesian monoidal structure.
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(iii) (Base-change). Suppose that we are given a Cartesian square

X ′ Y ′

X Y

f ′

g′
⌟

g

f

(2.91)

with f ∈ E (hence also f ′ ∈ E). Then:

(a) There is a canonical equivalence g∗f! ≃ f ′! g′,∗ of functors Q(X)→ Q(Y ′).

(b) There is a canonical equivalence f !g∗ ≃ g′∗f ′,! of functors Q(Y ′)→ Q(X). This
follows by passing to right adjoints in the previous.

We may prefer to equivalently view a six-functor formalism as a map of operads
Corr(C , E) → Cat⊗∞. Let (C , E) be a geometric setup and let Q : Corr(C , E) → Cat⊗∞
be a six-functor formalism. Let CE be the subcategory of C where we only allow mor-
phisms from E. There are functors C op → Corr(C , E) and CE → Corr(C , E). On objects
these are both induced by the identity; on morphisms the former sends [g : X → Y ] to

[Y
g←− X = X] and the latter sends [f : X → Y ] ∈ E to [X = X

f−→ Y ]. Via these functors
we can restrict Q and obtain functors

Q∗ : C op → Cat∞ and Q! : CE → Cat∞. (2.92)

By passing to right adjoints we obtain

Q∗ : C → Cat∞ and Q! : C op
E → Cat∞. (2.93)

In this context, we can make the following definition.

Definition 2.3.5. [Sch22, Definition 4.14].

(i) We say that a morphism f : X → Y in C is of ∗-descent if the canonical morphism

Q∗(Y )→ lim
[m]∈∆

Q∗(Xm+1/Y ) (2.94)

is an equivalence. We say that a morphism f : X → Y is of universal ∗-descent
if, for every Z ∈ C with a morphism Z → Y , the base-change X ×Y Z → Z is of
∗-descent.

(ii) We say that a morphism [f : X → Y ] ∈ E is of !-descent if the canonical morphism

Q!(Y )→ lim
[m]∈∆

Q!(Xm+1/Y ) (2.95)

is an equivalence. We say that a morphism f : X → Y is of universal !-descent
if, for every Z ∈ C with a morphism Z → Y , the base-change X ×Y Z → Z is of
!-descent.

Lemma 2.3.6 below can be viewed as the “easy direction” in a higher-categorical version
of the Bénabou–Roubaud theorem. In the other direction, one has Lurie’s Beck–Chevalley
condition [Lur17, Corollary 4.7.5.3].

Lemma 2.3.6. Fix a geometric setup (C , E) and a six-functor formalism Q : Corr(C , E)→
Cat⊗∞.
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(i) Let f : X → Y be a morphism of C which is of ∗-descent, c.f. Definition 2.3.5(i).
Then f∗ induces an equivalence of categories Q(Y ) ≃ Comodf∗f∗ Q(X), where the
latter is the category of comodules over the comonad f∗f∗.

(ii) Let f : X → Y be a morphism of E which is of !-descent, c.f. Definition 2.3.5(ii).
Then f ! induces an equivalence of categories Q(Y ) ≃ Modf !f! Q(X), where the latter
is the category of comodules over the comonad f !f!.

Proof. (i): This is [Cam24, Proposition 3.1.27].
(ii): We adapt the argument of [Cam24, Proposition 3.1.27]. The proof is an appli-

cation of the Barr–Beck–Lurie theorem [Lur17, Theorem 4.7.3.5]. The assumption that
f satisfies !-descent implies that f ! is conservative. It remains to show that f ! preserves
geometric realizations of f !-split simplicial objects.

Let (Mm)[m]∈∆op
+

be an augmented simplicial object of Q(Y ) which becomes split (i.e.,

acquires extra degeneracies), after applying f !. For each n ⩾ 0 let fn+1 : Y n+1/X → X
be the projection.

Then, for all n ⩾ 1, the augmented simplicial object (f !n+1Mm)m∈∆op
+

of Q(Y n+1/X)

is split. Let us set Nn+1 = colim[m]∈∆op f !n+1Mm. Note that the existence of the splitting

implies that the collection (Nn+1)[n]∈∆op is a Cartesian section of Q(Y •+1/X). Now, we
compute

colim
[m]∈∆op

Mm ≃ colim
[m]∈∆op

colim
[n]∈∆op

fn+1,!f
!
n+1Mm

≃ colim
[n]∈∆op

fn+1,! colim
[m]∈∆op

f !n+1Mm

≃ colim
[n]∈∆op

fn+1,!Nn+1.

(2.96)

Now, since (Nn+1)[n]∈∆op is a Cartesian section, !-descent for f says that f ! colim[m]∈∆op Mm =

N1 = colim[m]∈∆op f !Mm. Therefore f ! preserves geometric realizations of f !-split simpli-
cial objects and we are done.

2.3.1 An extension formalism for abstract six-functor formalisms

Remark 2.3.7. The content of this subsection originally appeared in [Soo24] and later
essentially the same result appeared as [HM24, Theorem 3.4.11]. We claim no originality
for the results of this subsection: the main result (Theorem 2.3.10) is just a re-hashing of
[Sch22, Theorem 4.20], and all of the extension principles were already developed by Mann
[Man22, §A.5]. We still include it because our formulation is perhaps slightly closer to
[Sch22, Theorem 4.20]: in particular we chose to keep the part about being “stable under
disjoint unions” because we find it useful. This property appears to have something to
do with idempotent completeness of the “representable objects”, see the proof of Theorem
2.3.17.

In this subsection we will fix two geometric setups (C , E0) and (C0, E00), and we will
also fix a six-functor formalism

Q : Corr(C , E0)→ Cat⊗∞, (2.97)

subject to the following list of Assumptions.

Assumptions 2.3.8. (i) C admits all fiber products and all small coproducts. We will
denote the initial object of C by ∅ and the final object by ∗.
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(ii) C0 ⊆ C is a full subcategory stable under fiber products in C .

(iii) For all X ∈ C , Q(X) is presentable.

(iv) A morphism f : X → Y of C belongs to E0 if and only if for every Z ∈ C0 with a
morphism Z → Y , the base-change [X ×Y Z → Z] ∈ E00.

(v) For all X ∈ C , the canonical morphism

Q∗(X)→ lim
Y ∈C0

op
/X

Q∗(Y ) (2.98)

is an equivalence. That is, Q∗ : C op → Cat∞ is the right Kan extension of Q∗|C op
0
→

Cat∞ along C op
0 → C op.

(vi) Coproducts in C are disjoint and universal. This means that:

(a) (Disjoint). For all X,Y ∈ C , the morphism ∅ → X×X∐
Y Y is an equivalence.

(b) (Universal). For all small families {Xi → Y }i∈I of morphisms in C and any
morphism Z → Y in C , the canonical morphism∐

i∈I
(Xi ×Y Z)→

(∐
i∈I

Xi

)
×Y Z (2.99)

is an equivalence.

(vii) For all X,Y ∈ C the morphism X → X
∐
Y ∈ E0.

(viii) Q! : C op
E0
→ Cat∞ preserves small products. That is, for all small families {Xi}i∈I of

objects of C , the natural morphism Q!
(∐

i∈I Xi

)
→

∏
i∈I Q

!(Xi) is an equivalence.
This condition makes sense by (vii).

(ix) Let δE0 be the class of morphisms in C whose diagonal belongs to E0. Then we
require that E0 ⊆ δE0

19.

Definition 2.3.9. [Sch22, Definition 4.18] Let (C , E) be another geometric setup such
that E0 ⊆ E.

(i) We say that the class E is stable under disjoint unions if for all small families
{Xi → Y }i∈I of morphisms of E, the morphism

∐
i∈I Xi → Y belongs to E.

(ii) We say that the class E is ∗-local on the target if whenever f : X → Y is a morphism
of C such that, for all Z ∈ C0 with a map Z → Y , the base change X ×Y Z → Z
belongs to E, then f ∈ E.

(iii) We say that Q extends uniquely to (C , E) if:

(a) There exists a six-functor formalism Q′ : Corr(C , E)→ Cat⊗∞ equipped with an
equivalence Q′|Corr(C ,E0)

≃ Q.

19Note that this differs slightly to [Sch22, Definition 4.18](3). I think that this change is actually
necessary in order to run the argument of [Sch22, Theorem 4.20] since, without it, the hypothesis (d) in
[Man22, Proposition A.5.14] might not be satisfied.
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(b) Whenever Q′′ : Corr(C , E) → Cat⊗∞ is another six-functor formalism whose
restriction to Corr(C , E0) is equipped with an equivalence

Q′|Corr(C ,E0)
≃ Q′′|Corr(C ,E0)

(2.100)

then there exists a unique (up to contractible choice) equivalence Q′ ≃ Q′′ lifting
(2.100).

(iv) Assume that Q extends uniquely to (C , E). We say that E is !-local on the source
if whenever f : X → Y is a morphism in C such that there exists [g : X ′ → X] ∈ E
of universal !-descent such that fg ∈ E, then f ∈ E.

(v) Assume that Q extends uniquely to (C , E). We say that E is tame if whenever
Y ∈ C0 and [f : X → Y ] ∈ E then there exists a small family {Xi → Y }i∈I
of morphisms in E00 and a morphism

[∐
i∈I Xi → X

]
∈ E over Y which is of

universal !-descent.

Theorem 2.3.10. [Sch22, Theorem 4.20] With notations as introduced in this subsection.
Under the Assumptions 2.3.8, there is a (minimal) collection of morphisms E ⊇ E0 of C
such that Q extends uniquely to (C , E) and E is stable under disjoint unions, ∗-local on
the target, is !-local on the source, is tame, and satisfies E ⊆ δE.

Proof. This is the same as [Sch22, Theorem 4.20]. We reproduce the proof here for
convenience, and also to convince the reader that the result is true in our slightly more
general context.

Let A be the class of all classes E of morphisms in C such that (C , E) is a geometric
setup, Q extends uniquely to (C , E), and E is tame and satisfies E ⊆ δE. By Assumptions
2.3.8(iv) and 2.3.8(ix), we have E0 ∈ A, and this is minimal.

In the proof of loc. cit. it was observed that filtered unions can be taken in the class
A, and that this is a convenient way to organise the fact that we will have to iterate the
extension principles of [Man22, §A.5] transfinitely many times. We will proceed in steps.
The steps will be indexed by ordinals starting at 2.

Step 2 : Let E ∈ A. We let E′ be the collection of morphisms which can be written as∐
iXi → Y such that each [Xi → Y ] ∈ E. By Assumptions 2.3.8(iii), 2.3.8(vi), 2.3.8(vii),

and 2.3.8(viii), we may apply [Man22, Proposition A.5.12] to deduce that (C , E′) is a
geometric setup and Q extends uniquely to (C , E′). Due to Assumptions 2.3.8(vi)(b) and
2.3.8(viii), the class E′ is again tame. Using Assumptions 2.3.8(vi) and (vii) we see that
E′ ⊆ δE′. The class E′ is clearly stable under disjoint unions. We conclude that any
E ∈ A can be minimally enlarged to E′ ∈ A which is stable under disjoint unions.

Step 3 : Again, let E ∈ A. Let E′ be the class of morphisms f : Y → X in C such that
there exists [g : Z → Y ] ∈ E of universal !-descent such that fg ∈ E. By Lemma 2.3.11
below, (C , E′) is again a geometric setup, and E′ is tame and satisfies E′ ⊆ δE′. Now we
can apply [Man22, Proposition A.5.14] to extend Q uniquely to (C , E′), taking the class
S of covers in loc. cit. to be those of universal !-descent. We note in particular that the
assumption (a) of loc. cit. is satisfied due to Assumption 2.3.8(iii) and the assumption
(d) of loc. cit. is satisfied since E ⊆ δE. We conclude that any E ∈ A can be minimally
enlarged to E′ ∈ A which is !-local on the source.

Step ω: By setting E1 := E0 and alternately applying Steps 2 and 3, we obtain a chain

E1 ⊆ E2 ⊆ E3 ⊆ E4 ⊆ . . . (2.101)
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such that for even n ⩾ 2, En is stable under disjoint unions and for odd n ⩾ 3, En is
!-local on the source. One then sets

Eω :=
⋃
n⩾1

En ∈ A. (2.102)

Then Eω is stable under disjoint unions and !-local on the source.
Step ω+1: Now assume that we are given E ∈ A which is stable under disjoint unions

and !-local on the source. We let E′ be the collection of morphisms [f : X → Y ] of C such
that for all Z ∈ C0 with a map Z → Y , the pullback [X×Y Z → Z] ∈ E. By Lemma 2.3.12
below, (C , E′) is again a geometric setup, E′ is tame and E′ ⊆ δE′. Now one defines
C ′ ⊆ C to be the full subcategory of C on objects X which admit an E-morphism to an
object of C0 and one sets E′′ to be the restriction of E to C ′. It is not hard to see that
the inclusion C ′ ⊆ C preserves pullbacks of edges in E′′ and that E′ consists precisely
of those morphisms whose pullback to C ′ belongs to E′′. Therefore one may restrict Q
to (C ′, E′) and then use [Man22, Proposition A.5.16] to extend Q back to (C , E′). In
order to satisfy the uniqueness assumption in loc. cit. and hence conclude that this is the
unique extension of Q from (C , E) to (C , E′), we need to see that for each X ∈ C , the
canonical morphism

Q∗(X)→ lim
Y ′∈(C ′

/X
)op
Q∗(Y ′) (2.103)

is an equivalence, i.e., that Q∗ is right Kan extended from C ′. This is a consequence of
Assumption 2.3.8(v) and the transitivity of Kan extensions [Lur18a, Tag 0314].

Step ω · 2: The class Eω+1 may no longer be !-local on the source or stable under
disjoint unions. Therefore one iterates Steps 2 and 3 again to obtain a chain Eω+1 ⊆
Eω+2 ⊆ Eω+3 ⊆ . . . such that Eω+2n is stable under disjoint unions and Eω+2n+1 is
!-local on the source, for all n ⩾ 1. One then sets Eω·2 :=

⋃
n⩾1Eω+n ∈ A, which is stable

under disjoint unions and !-local on the source.
Step ω2: Continuing in this way, we obtain an increasing sequence {Eα}α<ω2 of classes

in A. For each m ⩾ 1, Eω·m+1 is ∗-local on the target and Eω·m is !-local on the source
and stable under disjoint unions. Therefore Eω2 :=

⋃
α<ω2 Eα ∈ A is stable under disjoint

unions, ∗-local on the target, and !-local on the source.

The following auxiliary Lemmas were used in the proof of Theorem 2.3.10.

Lemma 2.3.11. With notations as introduced in this subsection. Let (C , E) be a geo-
metric setup with E0 ⊆ E and assume that Q extends uniquely to (C , E). Let E′ be the
class of morphisms f : Y → X in C such that there exists [g : Z → Y ] ∈ E of universal
!-descent such that fg ∈ E. Then:

(i) E′ is stable under base-change.

(ii) E′ is stable under composition.

(iii) If E satisfies the right cancellation property (that is, E ⊆ δE), then so does E′.

(iv) If E is tame then so is E′.

Proof. (i): This is clear.
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(ii): Let [f : Y → X] and [g : Z → Y ] ∈ E′, so that there exists [h : S → Y ] and
[k : T → Z] ∈ E of universal !-descent such that gk and fh ∈ E. Consider the diagram

T ×Y S

T S

Z Y X

h′ l′⌜

k
l

h

g f

(2.104)

to be sure, in this diagram the parallelogram is Cartesian and we have written l := gk.
By base change l′ ∈ E and so gkh′ = hl′ ∈ E. Also kh′ ∈ E is of universal !-descent
because this class is stable under composition and base-change.

(iii): Let [f : Y → X] and [g : Z → Y ] be morphisms of C such that fg and f ∈ E′,
so that there exists [h : S → Y ] and [k : T → Z] of universal !-descent such that fgk and
fh ∈ E. Consider again the diagram

T ×Y S

T S

Z Y X

h′ l′⌜

k
l

h

g f

(2.105)

one has fgkh′ = fhl′ ∈ E. Therefore, by the right cancellation property for E, l′ ∈ E.
Therefore gkh′ = hl′ ∈ E. Also kh′ ∈ E is of universal !-descent. Therefore g ∈ E′.

(iv): This follows by unravelling the definitions. Let [f : Y → X] ∈ E′ be such
that Y ∈ C0, so that there exists [g : Z → Y ] ∈ E of universal !-descent such that
fg ∈ E. By tameness of E there exists a small family {Xi → X}i∈I of morphisms of
E00 and a morphism

∐
i∈I Xi → Z over X which is of universal !-descent. The composite∐

i∈I Xi → Z → X is then a morphism of universal !-descent over X. Therefore E′ is
tame.

Lemma 2.3.12. With notations as introduced in this subsection. Let (C , E) be a geo-
metric setup with E0 ⊆ E and assume that Q extends uniquely to (C , E). Let E′ be the
collection of morphisms [f : X → Y ] of C such that for all Z ∈ C0 with a map Z → Y ,
the pullback [X ×Y Z → Z] ∈ E. Then:

(i) E′ is stable under base-change.

(ii) If E is tame then E′ is tame.

(iii) If E satisfies the right cancellation property (that is, E ⊆ δE), then so does E′.

(iv) If E is stable under disjoint unions, !-local on the source, and tame, then E′ is stable
under composition.

Proof. (i): This is clear.
(ii): This is clear since, by the definition, if [f : X → Y ] ∈ E′ has Y ∈ C0 then f ∈ E.
(iii): This is clear.
(iv): Let [f : Y → X] and [g : Z → Y ] ∈ E′, let [S → X] be a morphism from an

object S ∈ C0 and set T := Y ×X S, R := Z ×X S and let f ′ and g′ be the pullbacks of f
and g. By tameness there exists a small family {Si → S}i∈I of morphisms of E00 and a
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morphism
∐
i∈I Si → T over S of universal !-descent. We can summarise this information

in the diagram ∐
i∈I(Si ×T R)

∐
i∈I Si

R T S

Z Y X

g′ f ′

g f

(2.106)

where we used Assumption 2.3.8(vi)(b). Since the class E is !-local on the source and
stable under disjoint unions, to check that g′ ∈ E it suffices to check that each [Si×T R→
Si] ∈ E. But this is true by the assumption that g ∈ E′. Therefore E′ is stable under
composition.

2.3.2 The six-functor formalism of relative algebraic geometry

In this section I will assume that

⋆ V is a stable presentably symmetric monoidal ∞-category. We write ⊗ for the
monoidal structure on V .

We define E := CAlg(V )op. We use the formal expression Spec(A) to denote the object of
E corresponding to A ∈ CAlg(V ). By [Lur17, Theorem 4.5.3.1], (see also [Lur17, Remark
4.5.3.2]), there is a functor

QCoh : E op → CAlg(PrLst), (2.107)

which is given on objects by

QCoh(Spec(A)) := ModA V , (2.108)

and sends f : Spec(A)→ Spec(B) to f∗ = A⊗B−. The functor f∗ admits a right adjoint
f∗ which is nothing but the forgetful functor at the level of modules.

Proposition 2.3.13. The functor QCoh : E op → CAlg(PrLst) extends to a six-functor
formalism

QCoh : Corr(E , all)⊗ → PrL,⊗st (2.109)

such that for every morphism f in E one has f∗ = f!.

Proof. This is a straightforward application of [Man22, Proposition A.5.10] applied to the
decomposition (I, P ) = (equivalences, all). Base change and the projection formula both
follow from standard associativity properties of ⊗.

Notations 2.3.14. ⋆ Let Aff ⊆ E be a full subcategory stable under fiber products
and retracts.

⋆ Let τ be a Grothendieck topology on Aff such that QCoh∗ is a sheaf in this topology.
(By evaluation on the unit object, this in particular implies that τ is subcanonical).

⋆ Let Stk := Shvτ (Aff,∞Grpd) equipped with its natural topology as a topos, that is,
the topology of effective epimorphisms.

⋆ Let rep be the collection of morphisms in Stk which are representable in Aff.
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The Yoneda embedding induces a morphism of geometric setups (Aff, all)→ (Stk, rep).
By [Man22, Proposition A.5.16] QCoh extends to a six-functor formalism

QCoh : Corr(Stk, rep)⊗ → PrL,⊗st . (2.110)

such that QCoh∗ is a sheaf in the effective-epimorphism topology.

Lemma 2.3.15. Let g : Y → X ∈ rep. Then g∗ satisfies base-change and the projection
formula, and further g∗ is conservative.

Proof. Using that τ is subcanonical, all statements follow from descent.

Corollary 2.3.16. In the six-functor formalism (2.110), for every morphism [g : Y →
X] ∈ rep, there is a natural equivalence g!

∼−→ g∗.

Proof. By a straightforward application of [Man22, Proposition A.5.10], using Lemma
2.3.15 above, one constructs a second six-functor formalism on (Stk, rep), such that for
every [g : Y → X] ∈ rep one has g! = g∗. Now the unicity assertion in [Man22, Proposition
A.5.16] implies that this six-functor formalism is equivalent to the one constructed in
(2.110) above, which gives the Corollary.

Now we apply the extension formalism of §2.3.1.

Theorem 2.3.17 (The six-functor formalism of relative algebraic geometry). There exists
a (minimal) class of edges E ⊇ rep of Stk such that QCoh extends to a six-functor
formalism on (Stk, E) and E is stable under disjoint unions, ∗-local on the target, !-local
on the source, is tame, and satisfies E ⊆ δE.

Proof. We will apply Theorem 2.3.10 with

(C0, E00) := (Aff, all), and (C , E0) := (Stk, rep). (2.111)

We need to check that the Assumptions 2.3.8(i)-(ix) are satisfied. The Assumptions
2.3.8(i), (vi) are satisfied in any ∞-topos. The Assumption 2.3.8(v) follows from the fact
that QCoh∗ is left Kan extended along the Yoneda embedding, c.f. [Man22, Proposition
A.5.16], and then 2.3.8(iii) follows because QCoh(Y ) is presentable for every Y ∈ Aff. The
Assumption 2.3.8(ii) follows since the topology τ is subcanonical. Assumption 2.3.8(iv) is
clear from the definition of a representable morphism and 2.3.8(ix) is also easily verified.
So the only things to really check are Assumptions 2.3.8(vii) and 2.3.8(viii).

For 2.3.8(vii), by base-change it suffices to show that the morphism i : ∗ → ∗
∐
∗

into the first factor is representable. We note that this has a retraction r (the fold map)
and in fact one can20 write ∗ = lim

Idem
(∗

∐
∗) where the ∞-category Idem is from [Lur09b,

§4.4.5]. Now fiber products commute with limits so given Spec(A)→ ∗
∐
∗ we can write

∗×∗
∐

∗ Spec(A) = lim
Idem

Spec(A). Using that the Yoneda embedding is fully-faithful (since

τ is subcanonical) and preserves all limits which exist in Aff, we deduce that this is
representable, since Aff is idempotent complete (by assumption, it is stable under retracts
in E ).

For Assumption 2.3.8(viii) let us take objects X,Y ∈ Stk and consider the morphisms
s : X → X

∐
Y and t : Y → X

∐
Y . By the previous these both belong to the class rep,

so that in particular one has base-change for s∗ and t∗ against the upper-shriek functors.

20I would like to thank Sam Moore for a helpful discussion, and especially for explaining “Idem” to me.
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Because QCoh∗ is a sheaf, one has id ≃ s∗s∗⊕t∗t∗. Now applying s! and using base-change
we deduce that s! ≃ s∗.

Now suppose we are given a small collection {Xi}i∈I of objects of Stk and consider
the morphisms si : Xi →

∐
iXi and ti :

∐
j ̸=iXj →

∐
iXi. By the above argument we

have s!i ≃ s∗i . Since QCoh∗ is a sheaf, one has an equivalence
∏
i s

∗
i :

∏
i QCoh(Xi)

∼−→
QCoh(

∐
iXi). Hence also

∏
i s

!
i :

∏
i QCoh(Xi)

∼−→ QCoh(
∐
iXi) is an equivalence, as

required.

Remark 2.3.18. It is my hope that the discussion about idempotent-completeness in
the above Proof can be helpful to the authors of [HM24], in particular in relation to the
discussion above [HM24, Lemma 3.4.13].

2.3.3 A digression on Fourier–Mukai transforms and the tensor
product formula

I am grateful to Peter Scholze for explaining the main ideas of this subsection to me during
a conversation at the Clay Math conference in October 2024. In this subsection we use
notations as in §2.3.2. We let E be the collection of edges in Stk coming from Theorem
2.3.17 and let

QCoh : Corr(Stk, E)⊗ → PrL,⊗st . (2.112)

be the six-functor formalism coming from Theorem 2.3.17. Let us fix a base Y ∈ Stk. Let
(StkE)/Y be the full subcategory of Stk/Y consisting of those objects whose morphism
to Y belongs to the class E. Because the class E has the right cancellation property
then ((StkE)/Y , all) is a geometric setup and ((StkE)/Y , all)→ (Stk, E) is a morphism of
geometric setups and hence induces a morphism on the respective categories of correspon-
dences. By precomposition with (2.112) we obtain a six-functor formalism

QCoh : Corr((StkE)/Y , all)⊗ → PrL,⊗st (2.113)

which by [HM24, Lemma 3.2.5] factors over ModQCoh(Y ) Pr
L,⊗
st . That is, we obtain a

functor of operads

QCoh : Corr((StkE)/Y , all)⊗ → ModQCoh(Y ) Pr
L,⊗
st . (2.114)

By transferring [HM24, Definition C.3.1] the self-enrichment [HM24, §2.4] of

Corr((StkE)/Y , all)⊗ (2.115)

along this morphism of operads we obtain the category of correspondences KQCoh,Y , which

by [HM24, Lemma C.3.7] is equipped with a ModQCoh(Y ) Pr
L,⊗
st -enriched functor

ΨY : KQCoh,Y → ModQCoh(Y ) Pr
L,⊗
st . (2.116)

In particular for any pair of morphisms X → Y ← Z in Stk both belonging to E, we
obtain a “Fourier–Mukai transform”:

FM : QCoh(Z ×Y X)→ FunLQCoh(Y )(QCoh(Z),QCoh(X)) (2.117)

which, since ΨY is enriched, is compatible with composition (i.e., takes convolution of
kernels to composition of functors).
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Definition 2.3.19. We say that X ∈ Stk has affine diagonal if the diagonal X → X ×X
belongs to the class rep of representable morphisms.

Proposition 2.3.20. Let Y ∈ Stk have affine diagonal. Let f : Spec(B) → Y be an
object of Aff mapping to Y and let X → Y be an arbitrary morphism in Stk. Then the
natural morphism

QCoh(X)⊗QCoh(Y ) QCoh(Spec(B))→ QCoh(X ×Y Spec(B)) (2.118)

is an equivalence.

Proof. The proof of [BZFN10, Proposition 4.13] works in this generality.

Definition 2.3.21. We say a morphism f : Z → Y in Stk is transformable if it has
affine diagonal, and for every affine Spec(B) → Y , there is a morphism Spec(A) →
Z ×Y Spec(B) from an affine, which is of universal !-descent.

Theorem 2.3.22. Let Y ∈ Stk have affine diagonal and let f : Z → Y be transformable.
Then for any morphism X → Y in Stk the Fourier-Mukai transform

FM : QCoh(Z ×Y X)→ FunLQCoh(Y )(QCoh(Z),QCoh(X)), (2.119)

is an equivalence.

We first prove an intermediate Lemma.

Lemma 2.3.23. Let Z, Y ∈ Stk have affine diagonal, and assume that there exists a
morphism Z ′ = Spec(A)→ Z from an affine, which is of universal !-descent. Then:

(i) For any morphism X → Y in Stk, the natural morphism

QCoh(X)⊗QCoh(Y ) QCoh(Z)→ QCoh(X ×Y Z) (2.120)

is an equivalence.

(ii) QCoh(X) is dualizable and canonically self-dual as a QCoh(Y )-module.

(iii) For any morphism X → Y in Stk the Fourier-Mukai transform

FM : QCoh(Z ×Y X)→ FunLQCoh(Y )(QCoh(Z),QCoh(X)), (2.121)

is an equivalence.

Proof. (i): Since f is assumed to be transformable, there exists a morphism g : Z ′ =
Spec(A)→ Z from an affine, which is of universal !-descent. That is, the canonical mor-
phism QCoh(Z)→ lim[n]∈∆ QCoh!(Z ′,n+1/Z) is an equivalence in Cat∞, or, equivalently,

the canonical morphism colim[n]∈∆op QCoh!(Z
′,n+1/Z) → QCoh(Z) is an equivalence in

ModQCoh(Y ) Pr
L
st, (and similarly for any base-change of g over Y ). Because the Lurie

tensor product commutes with colimits separately in each variable, we therefore obtain

QCoh(X)⊗QCoh(Y ) QCoh(Z) ≃ QCoh(X)⊗QCoh(Y )

(
colim
[n]∈∆op

QCoh!

(
Z ′,n+1/Z

))
≃ colim

[n]∈∆op

(
QCoh(X)⊗QCoh(Y ) QCoh!

(
Z ′,n+1/Z

))
≃ colim

[n]∈∆op
QCoh!

(
X ×Y Z ′,n+1/Z

)
≃ QCoh(X ×Y Z),

(2.122)
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where in the third line we used Proposition 2.3.20, noting that all the iterated fiber
products Z ′,n+1/Z are affine because Z is assumed to have affine diagonal.

(ii): We first claim that Z → Y ∈ E. Because the class E of !-able morphisms is !-local
on the source, morphism f : Z → Y belongs to the class E if and only if Z ′ → Y does.
But, since Y has affine diagonal, this morphism belongs to rep ⊆ E. We next claim that
Z, viewed as an object of the symmetric-monoidal category

Corr((StkE)/Y , all)⊗, (2.123)

is dualizable and canonically self-dual. Indeed, the unit and counit and given by the
correspondence

Y
f←− Z ∆f−−→ Z ×Y Z (2.124)

and its opposite, respectively. Applying QCoh and using part (i), one obtains a unit

QCoh(Y )
∆f,!f

∗

−−−−→ QCoh(Z ×Y Z) ≃ QCoh(Z)⊗QCoh(Y ) QCoh(Z) (2.125)

and a counit

QCoh(Z)⊗QCoh(Y ) QCoh(Z) ≃ QCoh(Z ×Y Z)
f!∆

∗
f−−−→ QCoh(Y ), (2.126)

which, using part (i), satisfy the zig-zag identities. This proves (ii).
(iii): Follows by combining (i) and (ii).

Proof of Theorem 2.3.22. We follow [BZFN10, Theorem 4.14]. We first note that every
transformable morphism belongs to the class E. Indeed, since the class E is ∗-local on
the target, we reduce immediately to the affine case. Then the claim follows since E is
!-local on the source.

Because the underlying site is subcanonical, we may write Y ≃ colim
Spec(B)→Y

Spec(B) as

the colimit over all affines mapping to it. Then by ∗-descent one has

QCoh(Z ×Y X) ≃ lim QCoh(Z ×Y X ×Y Spec(B))

≃ lim QCoh((Z ×Y Spec(B))×Spec(B) (X ×Y Spec(B))).
(2.127)

By Lemma 2.3.23(iii) there are equivalences

QCoh((Z ×Y Spec(B))×Spec(B) (X ×Y Spec(B)))

≃ FunLQCoh(Spec(B))(QCoh(Z ×Y Spec(B)),QCoh(X ×Y Spec(B)))

≃ FunLQCoh(Spec(B))(QCoh(Z)⊗QCoh(Y ) QCoh(Spec(B)),QCoh(X ×Y Spec(B)))

≃ FunLQCoh(Y )(QCoh(Z),QCoh(X ×Y Spec(B))),

(2.128)
where in the last line we used tensor-hom adjunction. Hence,

QCoh(Z ×Y X) ≃ lim FunLQCoh(Y )(QCoh(Z),QCoh(X ×Y Spec(B)))

≃ FunLQCoh(Y )(QCoh(Z),QCoh(X)),
(2.129)

where we used descent, and that FunLQCoh(Y)(−,−) commutes with limits in the second
variable (it is right adjoint to the Lurie tensor product).
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In what follows we let
KQCoh,Y,tr ⊆ KQCoh,Y (2.130)

denote the full subcategory (in the sense of ModQCoh(Y ) Pr
L
st-enriched categories, see

[HM24, Example C.1.13]), spanned by objects whose morphism to Y is transformable.

Corollary 2.3.24. Assume that Y ∈ Stk has affine diagonal. Then

ΨY |tr : KQCoh,Y,tr → ModQCoh(Y ) Pr
L
st (2.131)

is a fully-faithful functor of ModQCoh(Y ) Pr
L
st-enriched categories.

Corollary 2.3.25. Assume that Y ∈ Stk has affine diagonal and f : Z → Y is trans-
formable. Then the Fourier-Mukai transform gives an equivalence of monoidal categories

FM : QCoh(Z ×Y Z)
∼−→ FunLQCoh(Y )(QCoh(Z),QCoh(Z)), (2.132)

with the convolution monoidal structure on the left and on the composition monoidal
structure on the right.

Example 2.3.26. In §3.1.5, we apply the results of this section to the case of derived
rigid spaces, c.f. Corolllary 3.1.47.
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Chapter 3

Derived rigid geometry as
relative algebraic geometry

3.1 Derived rigid geometry

Now let K/Qp be a complete field extension. In this section we attempt to summarize the
work of [BBKK24], and take some shortcuts, to obtain a theory of derived rigid spaces
which is good enough for our purposes.

3.1.1 Derived affinoid spaces

Definition 3.1.1. We define dAfndAlg to be the full subcategory of monoids A in D⩾0(CBornK)
with the following properties.

(i) π0(A) is a K-affinoid algebra. That is, it is the quotient of a (classical) Tate algebra
in finitely many variables.

(ii) For every m ⩾ 0, πm(A) is finitely-generated as a π0(A)-module.

Lemma 3.1.2. (i) dAfndAlg is stable under pushouts in Alg(D⩾0(CBornK)).

(ii) dAfndAlg is stable under finite products in CAlg(D⩾0(CBornK)).

(iii) dAfndAlg is stable under retracts in CAlg(D⩾0(CBornK)).

Proof. (i): Let B → A and B → C be morphisms in dAfndAlg. Since π0 is left adjoint
to the inclusion of discrete objects in CAlg(D⩾0(CBornK)), it commutes with pushouts.

In particular one has π0(A“⊗L

BC) ≃ π0(A)“⊗π0(B)π0(C). Now, the homology functors are

valued in the left heart and so, the claim that π0(A“⊗L

BC) is an affinoid algebra will follow

if we can show that the tensor product π0(A)“⊗LHπ0(B)π0(C), which is taken with respect to
the monoidal structure on the left heart, coincides with the completed tensor product of
Banach spaces1. Let us set A′ := π0(A), B′ := π0(B) and C ′ := π0(C). We first treat the
case when B′ = K. Let us temporarily write Tn := K⟨x1, . . . , xn⟩ and take a presentation

T⊕l
n → Tn ↠ A′. (3.1)

1I would like to thank Jack Kelly for explaining this argument to me.
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Tensoring with C ′ and using flatness of the Tate algebra gives

T⊕l
n
“⊗KC ′ f−→ Tn“⊗KC ′ ↠ A′“⊗LHK C ′, (3.2)

so that A′“⊗LHK C ′ is the cokernel of f . The image of f is an ideal, and all ideals in affinoid
algebras are closed, so f is strict by the open mapping theorem. Hence coker f belongs
to CBornK and coincides with A′“⊗KC ′ as required. In general, using this case we know
that there is an exact sequence

A′“⊗KB′“⊗KC ′ g−→ A′“⊗KC ′ ↠ A′“⊗LHK C ′, (3.3)

and the image of g is once again an ideal, so g is strict by the same reasoning, and so coker g

belongs to CBornK and coincides with A′“⊗B′C ′. Now we claim that each πm(A“⊗L

BC) is
finitely-generated as a π0(A)“⊗π0(B)π0(C)-module. This follows from the convergence of
the Tor-spectral sequence2

E2
pq : Torpπ∗(B)(π∗(A), π∗(C))q ⇒ πp+q(A“⊗L

BC), (3.4)

(c.f. [BBKK24, Lemma 4.5.55]) combined with Noetherianity of affinoid algebras. (ii):
This is clear from the isomorphism π∗(

∏n
i=1Ai)

∼=
∏n
i=1 π∗(Ai) which holds for any finite

collection of objects {Ai}ni=1 of objects of dAfndAlg. (iii): If A is a retract of B ∈ dAfnd
then π∗(A) is a retract of π∗(B), and hence A ∈ dAfnd.

Definition 3.1.3. A morphism A → B in CAlg(D(CBornK)) is called a homotopy epi-

morphism if the codiagonal morphism B“⊗L

AB → B is an equivalence.

Definition 3.1.4. A morphism A → B in CAlg(D⩾0(CBornK)) is called derived strong
if for every m ⩾ 0, the natural morphism

πm(A)“⊗L

π0(A)π0(B)→ πm(B) (3.5)

is an equivalence.

Definition 3.1.5. A morphism A→ B in dAfndAlg is a derived rational localization if:

(i) π0(A)→ π0(B) is a rational localization (of affinoid algebras in the classical sense).

(ii) A→ B is derived strong.

We denote the class of derived rational localizations in dAfndAlg by L .

Remark 3.1.6. Because each πm(A) is finitely-generated as a π0(A)-module, and finitely-
generated π0(A)-modules are transverse to rational localizations of π0(A), condition (ii)
in Definition 3.1.5 is equivalent to:

(ii)′ For every m ⩾ 0, the natural morphism

πm(A)“⊗π0(A)π0(B)→ πm(B) (3.6)

is an equivalence.

In the terminology of [BBKK24], one says that A→ B is strong.

2(Here and elsewhere, Tor denotes the homotopy groups of the derived completed tensor product).
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Lemma 3.1.7. (i) The class L contains all equivalences and is stable under composi-
tion.

(ii) L is stable under base-change by arbitrary morphisms of dAfndAlg.

(iii) Every morphism of L is a homotopy epimorphism.

Proof. (i): It is clear that L contains all equivalences. Let A → B and B → C be
morphisms of L . Since rational localizations are stable under composition, the composite
π0(A) → π0(B) → π0(C) is a rational localization. It is easy to show that A → C is
(derived) strong, by using that A → B and B → C are (derived) strong together with
associativity of “⊗.

(iii): This is [BBKK24, Proposition 2.6.165(2)]. We first observe that, by [BBK17,
Theorem 5.16], the morphism π0(A)→ π0(B) is a homotopy epimorphism, meaning that

π0(B)“⊗L

π0(A)π0(B)
∼−→ π0(B) is an isomorphism. Using this, and the derived strong

property (3.5), one has

π∗(B)“⊗L

π∗(A)π∗(B) ≃ π∗(A)“⊗L

π0(A)π0(B)“⊗L

π0(A)π0(B)

≃ π∗(A)“⊗L

π0(A)π0(B)

≃ π∗(B).

(3.7)

Now we consider the Tor-spectral sequence

E2
pq : Torpπ∗(A)(π∗(B), π∗(B))q ⇒ πp+q(B“⊗L

AB), (3.8)

and observe that, because of (3.7), this collapses on the first page. In combination with

(3.7) this gives π∗(B“⊗L

AB) ∼= π∗(B) which shows that B“⊗L

AB → B is an equivalence.
(ii): Let A → A′ be a further morphism and let B′ be defined as the pushout (using

Lemma 3.1.2) in dAfndAlg:

A B

A′ B′

⌟

(3.9)

Since π0 commutes with pushouts and rational localizations of classical affinoid algebras
are stable under base-change, we see that π0(A′)→ π0(B′) is a rational localization.

Since π0(A′)→ π0(B′) is a rational localization, and πm(A′) is finitely-generated as a
module over π0(A′), the canonical morphism

πm(A′)“⊗L

π0(A′)π0(B′)
∼−→ πm(A′)“⊗π0(A′)π0(B′) (3.10)

is an equivalence. In the terminology of [BBKK24] one says that πm(A′) is transversal to
π0(B′) over π0(A′). Additionally, we claim that the natural morphism

B′“⊗L

A′B′ ∼−→ B′ (3.11)

is an equivalence. Indeed, we know that B′ ≃ B“⊗L

AA
′ and by (iii) we have B“⊗L

AB
∼−→ B.

Therefore, by the associativity properties of “⊗L
, we obtain (3.11).
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In order to prove (ii) what we needed to verify was that the morphism A′ → B′ satisfies
the derived strong property (3.5). We claim that this follows from the properties (3.10)
and (3.11)3.

By basic properties of the cotangent complex, c.f. [BBKK24, Proposition 2.1.40,
Proposition 2.1.41, Lemma 2.1.42], the homotopy epimorphism property (3.11) implies
that the cotangent complex LB′/A′ ≃ 0. Let C be defined by the pushout in dAfndAlg
(again using Lemma 3.1.2):

A′ B′

π0(A′) C

⌟

(3.12)

We claim that the natural morphism C → π0(B′) induced by the universal property
of pushouts, is an equivalence. It is clear, by applying π0 to (3.12), that this is an
isomorphism on π0. Therefore it suffices to show that Lπ0(B′)/C ≃ 0. There is a fiber
sequence

LC/π0(A′)“⊗L

Cπ0(B′)→ Lπ0(B′)/π0(A′) → Lπ0(B′)/C . (3.13)

Now Lπ0(B′)/π0(A′) ≃ 0 because π0(A′)→ π0(B′) is a homotopy epimorphism (being a ra-
tional localization). And LC/π0(A′) ≃ 0 because π0(A′)→ C is a homotopy epimorphsim,
by base-change. So indeed Lπ0(B′)/C ≃ 0.

Now we know that the morphism

π0(A′)“⊗L

AB
′ ∼−→ π0(B′) (3.14)

is an equivalence. Using this and the transversality property (3.10), an inductive argument
as described in [BBKK24, Proposition 2.3.90], guarantees that A′ → B′ is derived strong.

Corollary 3.1.8. [Man22, Remark 2.4.4] Let f, g be composable morphisms in dAfndAlg.
If gf and f both belong to L then so does g.

Proof. Let us write f : A→ B and g : B → C. One can write g as the composite

B → C“⊗L

AB ≃ C“⊗L

BB“⊗L

AB ≃ C, (3.15)

where we used that f is a homotopy epimorphism, c.f. Lemma 3.1.7(iii). The first map
in (3.15) is the base change of gf : A→ C, which belongs to L by Lemma 3.1.7(ii).

Let K[T1, . . . , Tn] denote the polynomial algebra in n variables endowed with the fine
bornology. As a bornological vector space one views K[T1, . . . , Tn] as the colimit of its
finite-dimensional K-subspaces each endowed with their canonical bornology. This is a
projective object in CAlg(D⩾0(CBornK)). In particular, given any B ∈ dAfndAlg and
any morphism K[T1, . . . , Tn] → π0B there exists a lift K[T1, . . . , Tn] → π0B making the
following diagram commute up to homotopy:

B

K[T1, . . . , Tn] π0B

(3.16)

3Indeed, this is [BBKK24, Proposition 2.6.160]. However, in this specific setting the proof of loc. cit.
simplifies and so we record it here.
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Now suppose we are given A ∈ dAfndAlg and elements a0, . . . , an ∈ π0A such that the
ideal generated by a0, . . . , an is all of π0A. This determines a morphism

K[T1, . . . , Tn]→ π0A“⊗KK⟨X1, . . . , Xn⟩ (3.17)

sending Ti 7→ a0Xi − ai, which, by the above discussion, lifts to

K[T1, . . . , Tn]→ A“⊗L

KK⟨X1, . . . , Xn⟩. (3.18)

We define
A′ := (A“⊗L

KK⟨X1, . . . , Xn⟩)//L(a0X1 − a1, . . . , a0Xn − an)

:= (A“⊗L

KK⟨X1, . . . , Xn⟩)“⊗L

K[T1,...,Tn]K.
(3.19)

We claim that:

Lemma 3.1.9. (i) A→ A′ is a derived rational localization;

(ii) Every derived rational localization of A arises in this way.

Proof. (i): It is certainly true that π0A → π0A
′ is a rational localization; what we need

to show that that A→ A′ is derived strong. This is quite similar to the proof of Lemma
3.1.7(ii). By [BBKK24, Lemma 4.5.79], A → A′ is a homotopy epimorphism. There-

fore, the same argument as in Lemma 3.1.7(ii) shows that π0(A)“⊗L

AA
′ → π0(A′) is an

equivalence. Also, since each πm(A) is finitely-generated over π0(A), it is transversal to
π0(A′) over π0(A). Therefore [BBKK24, Proposition 2.3.90] guarantees that A → A′ is
derived strong. Finally, we note that this implies that A′ ∈ dAfndAlg since πm(A′) ∼=
πm(A)“⊗π0(A)π0(A′) is then finitely-generated as a π0(A′)-module.

(ii): Let A → B be a derived rational localization. By Lemma 3.1.7(iii), A → B
is a homotopy epimorphism, in particular it is formally étale in the sense of [BBKK24,
Corollary 2.1.36].

Now π0A → π0B is a rational localization, so by the construction in (i) we can con-
struct another rational localization A → B′ which is of the form in (i), and is such that
[π0A → π0B

′] = [π0A → π0B]. Now the étale lifting property [BBKK24, Corollary
2.1.36], guarantees that the identification π0B

′ = π0B lifts, uniquely up to contractible
choice, to an equivalence B′ ≃ B under A.

Let us isolate the following facts from the proof of Lemma 3.1.9:

Scholium 3.1.10. Let A ∈ dAfnd.

(i) Let A → A′, A → A′′ be derived rational localizations. Any isomorphism π0A
′ ∼=

π0A
′′ lifts (uniquely up to contractible choice) to an equivalence A′ ≃ A′′ under A,

(ii) Let π0A → B0 be a rational localization. Then there exists a (unique up to con-
tractible choice) derived rational localization A→ B reducing to π0A→ B0 on π0.

Definition 3.1.11. (i) We define dAfnd to be the opposite ∞-category to dAfndAlg.
The objects of dAfnd are denoted by dSp(A), for A ∈ dAfndAlg.

(ii) We say that a morphism dSp(B) → dSp(A) in dAfnd is a rational subdomain of
dSp(A) if [A→ B] ∈ L .

Now we define some Grothendieck topologies as follows.

57



Topics in derived analytic geometry

Definition 3.1.12. Let X = dSp(A) be a derived affinoid rigid space.

(i) The small weak analytic site of X, is the ∞-site with:

(a) underlying ∞-category given by the full subcategory of dAfnd/X on rational
subdomains dSp(B)→ dSp(A).

(b) covering sieves generated by finite families of rational subdomains {dSp(Bi)→
dSp(B)}ni=1 such that {Sp(π0(Bi))→ Sp(π0(B))}ni=1 is an admissible covering
of the classical rigid space Sp(π0(B)) in the weak G-topology.

(ii) The big weak analytic site on dAfnd, is the ∞-site with:

(a) underlying ∞-category given by dAfnd;

(b) covering sieves generated given by finite families of rational subdomains {dSp(Bi)→
dSp(B)}ni=1 such that {Sp(π0(Bi))→ Sp(π0(B))}ni=1 is an admissible covering
of the classical rigid space Sp(π0(B)) in the weak G-topology.

Definition 3.1.13. Let X = dSp(A) be a derived affinoid rigid space. We define the
∞-category of quasicoherent sheaves as

QCoh(dSp(A)) := ModA(D(CBornK)), (3.20)

where the latter is the category of modules over the monoid A ∈ CAlg(D(CBornK)).

For a morphism f : dSp(A)→ dSp(B) in dAfnd the induced pullback functor

f∗ : QCoh(dSp(B))→ QCoh(dSp(A)) (3.21)

is left adjoint to the restriction of scalars

f∗ : QCoh(dSp(A))→ QCoh(dSp(B)). (3.22)

In particular via the pullbacks we obtain a functor

QCoh : dAfndop → CAlg(PrLst). (3.23)

Lemma 3.1.14. (i) The functor QCoh : dAfndop → CAlg(PrLst) extends to a six-functor
formalism

QCoh : Corr(dAfnd, all)⊗ → PrL,⊗st (3.24)

such that for every morphism f in dAfnd one has f∗ = f!.

(ii) For every morphism f in dAfnd functor f∗ is conservative and colimit-preserving.

Proof. (i): The proof is identical to Proposition 2.3.13. (ii) This is clear because f∗
identifies with the forgetful functor at the level of modules.

Definition 3.1.15. We define

Shvweak(dAfnd) := Shvweak(dAfnd,∞Grpd) (3.25)

to be the ∞-category of sheaves on the ∞-site dAfnd equipped with the weak topology.
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Lemma 3.1.16. (i) For every derived affinoid rigid space X = dSp(A) the functor
dSp(A) : dAfndop →∞Grpd represented by dSp(A)4 is a sheaf on dAfnd in the weak
topology. That is to say, this topology is subcanonical.

(ii) The functor QCoh : dAfndop → CAlg(PrLst) is a sheaf on dAfnd in the weak topology.

Proof. We prove (ii) first. Let {dSp(Bi)→ dSp(B)}ni=1 be a covering in the weak topology.
Let I be the collection of finite subsets I ⊆ {1, . . . , n} (we always view such I as being
totally ordered). By definition, {Sp(π0(Bi))→ Sp(π0(B))}ni=1 is a covering in the classical
weak topology. The acyclicity of the ordered Čech complex together with the Dold-Kan
correspondence [Lur17, Example 1.2.4.10] implies that

π0(B)
∼−→ lim

I=(i1,...,ik)∈I
π0(Bi1)“⊗π0(B)π0(Bi2) . . .“⊗π0(B)π0(Bik)

≃ lim
I=(i1,...,ik)∈I

π0(Bi1“⊗L

BBi2 . . .“⊗L

BBik)
(3.26)

is an equivalence in the∞-category QCoh(dSp(π0(A))). Using that the class L of derived
rational localizations is stable under base change, c.f. Lemma 3.1.7(ii), we know that each

B → Bi1“⊗L

BBi1 . . .“⊗L

BBik satisfies the derived strong property (3.5). Therefore if we

apply the functor πq(B)“⊗L

π0(B)− to both sides of (3.26), using that the limit is finite and
the categories are stable, we see that

πq(B)
∼−→ lim

I=(i1,...,ik)∈I
πq(Bi1“⊗L

BBi2 . . .“⊗L

BBik) (3.27)

is an equivalence in QCoh(dSp(π0(B))). In particular

Hp
(

lim
(i1,...,ik)∈I

πq(Bi1“⊗L

BBi2 . . .“⊗L

BBik)
)
∼= 0 for p > 0. (3.28)

This implies that the spectral sequence

Hp
(

lim
(i1,...,ik)∈I

πq(Bi1“⊗L

B . . .“⊗L

BBik)
)
⇒ πq−p

(
lim

(i1,...,ik)∈I
Bi1“⊗L

B . . .“⊗L

BBik

)
(3.29)

degenerates and gives an isomorphism

πq

(
lim

(i1,...,ik)∈I
Bi1“⊗L

BBi1 . . .“⊗L

BBik

)
∼= eq

( n∏
i=1

πq(Bi) ⇒
∏

1⩽i<j⩽n

πq(Bi“⊗L

BBj)
)
. (3.30)

On the other hand since B → Bi1“⊗L

BBi1 . . .“⊗L

BBik satisfies the derived strong property
(3.5) and πq(B) is transversal to rational localizations over π0(B) since it is finitely-
generated, we see that

πq(Bi“⊗L

BBj) ≃ πq(B)“⊗L

π0(B)π0(Bi“⊗L

BBj)

≃ πq(B)“⊗π0(B)π0(Bi)“⊗π0(B)π0(Bj).
(3.31)

4Via the ∞-categorical Yoneda embedding.
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Using (3.31) in the right-side of (3.30) we obtain

eq
( n∏
i=1

πq(Bi) ⇒
∏

1⩽i<j⩽n

πq(Bi“⊗L

BBj)
)

∼= eq
( n∏
i=1

πq(B)“⊗π0(B)π0(Bi) ⇒
∏

1⩽i<j⩽n

πq(B)“⊗π0(B)π0(Bi)“⊗π0(B)π0(Bj)
)

∼= πq(B),

(3.32)

where in the last line we used the classical theorem of descent for coherent sheaves on
affinoid rigid spaces. Putting this all together we deduce that for each q ⩾ 0, the morphism

πq(B)→ πq

(
lim

(i1,...,ik)∈I
Bi1“⊗L

B . . .“⊗L

BBik

)
(3.33)

is an isomorphism and therefore the natural morphism

B
∼−→ lim

(i1,...,ik)∈I
Bi1“⊗L

B . . .“⊗L

BBik , (3.34)

is an equivalence. This shows that the canonical morphism B →
∏n
i=1Bi is descendable

in the sense of Mathew [Mat16, §3.3]. The result of loc. cit. then implies that if one sets
Y :=

∐n
i=1 dSp(Bi)→ dSp(B) =: X then the natural morphism

QCoh(X)
∼−→ lim

[m]∈∆
QCoh(Y m+1/X) (3.35)

is an equivalence, proving (ii). Looking at the unit object we see that

B
∼−→ lim

[m]∈∆

( n∏
i=1

Bi
)“⊗L

B(m+1)
(3.36)

is an equivalence. If A ∈ dAfndAlg is a derived affinoid algebra, we can apply the functor
MapdAfndAlg(A,−) to both sides of (3.36) to deduce (i).

Remark 3.1.17 (Notational remark). In derived geometry, it appears to be conventional
to mix homological and cohomological indexing conventions, that is πi stands for the ho-
mology functors, Hi stands for the cohomology functors, and they are related by πi = H−i

for i ∈ Z. Usually, one uses πi for the homotopy groups of commutative algebra objects,
and Hi for the cohomology groups of “linear” objects like cochain complexes (though this
is not a hard and fast rule). The historical reason for this is that “derived rings” are often
modelled on simplicial commutative rings, which have “homotopy groups”, whereas alge-
braic geometers prefer cohomological indexing convention for derived categories of quasi-
coherent sheaves.

Remark 3.1.18. Let X = dSp(A) be a derived affinoid rigid space and let {Ui → X}ni=1

be a covering in the weak topology. Let I be the family of finite nonempty subsets I ⊆
{1, . . . , n} ordered by inclusion. For I = (i0, . . . , ik) ∈ I, we set UI :=

⋂
j∈I Uj :=

Ui0 ×X · · · ×X Uik . In the course of proving Lemma 3.1.16 we obtained two facts.

(i) There is a canonical equivalence

colim
I∈I

UI
∼−→ X (3.37)

in Shvweak(dAfnd). This is a consequence of (3.34).
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(ii) Set Y :=
∐n
i=1 Ui. Then there is a canonical equivalence

colim
[m]∈∆op

Y m+1/X ∼−→ X (3.38)

in Shvweak(dAfnd). This is a consequence of (3.36).

3.1.2 The gluing procedure

Now in a similar manner to [Man22, §2.4] we will glue derived affinoid rigid spaces to obtain
our desired category of derived rigid spaces. Since the weak topology is subcanonical we
can view dAfnd ⊆ Shvweak(dAfnd) as a full subcategory. In fact we will slightly abuse the
terminology in order to make the following definition.

Definition 3.1.19. (i) A affinoid derived rigid space is an object of Shvweak(dAfnd)
which is isomorphic to dSp(A) for some A ∈ dAfndAlg.

(ii) Let X = dSp(A) be an affinoid derived rigid space. An analytic subspace U ↪→ X is
a subsheaf U of X such that:

⋆ There exists a small collection {dSp(Ai)}i∈I of derived affinoid spaces and an
effective epimorphism

∐
i∈I dSp(Ai) → U in Shvweak(dAfnd) such that each

dSp(Ai)→ dSp(A) is a rational subdomain.

(iii) Let X ∈ Shvweak(dAfnd). An analytic subspace Y ↪→ X is a subsheaf such that
for every affinoid derived rigid space dSp(A) → X mapping to X, the pullback
Y ×X dSp(A) ↪→ dSp(A) is an analytic subspace in the sense of (ii). The morphism
Y → X is then called an open immersion.

(iv) A derived rigid space is an object X ∈ Shvweak(dAfnd) such that there exists a small
collection {dSp(Ai)}i∈I of derived affinoid subspaces such that

∐
i∈I dSp(Ai) → X

is an effective epimorphism. We denote the full subcategory of Shvweak(dAfnd) on
derived rigid spaces by dRig.

We remark that the category dRig admits all fiber products. The terminal object is
dSp(K). We can formally define some Grothendieck topologies as follows.

Definition 3.1.20. Let X ∈ dRig be a derived rigid space.

(i) The small strong analytic site of X, is the ∞-site with:

(a) underlying ∞-category given by the full subcategory of dRig/X on analytic sub-
spaces Y ↪→ X;

(b) covering sieves generated by small families of analytic subspaces {Yi ↪→ X}i∈I
such that

∐
i∈I Yi → X is an effective epimorphism.

(ii) The big strong analytic site on dRig, is the ∞-site with:

(a) underlying ∞-category given by dRig;

(b) covering sieves generated by small families of analytic subspaces {Yi ↪→ X}i∈I
such that

∐
i∈I Yi → X is an effective epimorphism.

3.1.3 The underlying topological space

In order to make this theory more workable we will associate to eachX ∈ dRig a topological
space. We always assume the axiom of choice5.

5This is necessary in order to know that every filter is contained in a maximal filter.
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Definition 3.1.21. An object X ∈ dRig is called classical if it admits a covering
∐
i∈I dSp(Ai)→

X by affinoid subspaces such that all the Ai are discrete.

Lemma 3.1.22. The inclusion of classical rigid spaces admits a right adjoint X 7→ X0

which extends dSp(A) 7→ dSp(π0(A)). Y ↪→ X is an analytic subspace if and only if
Y0 ↪→ X0 is an analytic subspace.

Proof. Let us temporarily denote X := Shvweak(dAfnd). The functor (−)0 : dAfnd →
dAfnd : dSp(A) 7→ dSp(π0A) preserves fiber products. For every finite covering fam-
ily {dSp(Bi) → dSp(B)}ni=1 in the weak topology, by Definition 3.1.12 one has that
{dSp(π0Bi) → dSp(π0B)}ni=1 is a covering family in the weak topology. Since the topol-
ogy is subcanonical by Lemma 3.1.16, this implies that

∐n
i=1 dSp(π0Bi) → dSp(π0B)

is an effective epimorphism in X . Therefore one may use the local Yoneda embed-
ding [Lur09b, Proposition 6.2.30] to extend (−)0 to a colimit-preserving left-exact functor
(−)0 : X → X . In particular (−)0 preserves effective epimorphisms and subobjects,
and therefore sends objects of dRig ⊆ X to classical rigid spaces (in the sense of the
above definition), and also restricts to the identity on classical rigid spaces. Let Y be
a classical rigid space and let X ∈ dRig. Then (−)0 induces Map(Y,X) → Map(Y,X0).
We claim that this is an equivalence. Fix a covering U = {Ui} of X by derived affinoids.
Given a covering V = {Vj} of Y by classical affinoids one can consider the full subspace

MapVU (Y,X) ⊆ Map(Y,X) spanned by morphisms f such that V refines the pullback of
U along f . One then has colimV MapVU (Y,X) ≃ Map(Y,X), where the system of cover-
ings V is ordered by refinement. Hence one can reduce the claim to the case when X is a
derived affinoid and then further to when Y is a classical affinoid. The claim then follows
since π0 is a left adjoint at the level of algebra.

Now in a similar manner to [CS19b, Lecture XIV] we will associate a topological space
to every X ∈ dRig as follows. Viewed as an object of Shvweak(dAfnd), the collection
Sub(X) of subobjects of X forms a locale, as can be seen by applying the results of
[Lur09b, §6.4.5] to the ∞-topos Shvweak(dAfnd)/X . We will write the operations of join
and meet in this locale as ∪ and ∩, respectively. Now we have the following Lemma.

Lemma 3.1.23. With respect to the same operations of join and meet, the poset of
analytic subspaces of X, in the sense of Definition 3.1.12, also forms a locale.

Proof. It is clear that the meet of two analytic subspaces of X is again an analytic sub-
space: one has U ∩V = U×X V . The join of two objects U, V ∈ Sub(X) is given explicitly
as

U ∪ V = U
∐
U∩V

V, (3.39)

from which one can of course deduce the formula for finite joins. More generally, if {Ui}i∈I
is a small family of analytic subspaces of X, then one has explicitly⋃

i∈I
Ui = colim

I

⋃
i∈I

Ui, (3.40)

where the colimit runs over the finite subsets I ⊆ I. Now we recall that colimits in any
∞-topos are universal (this is one of the Giraud–Rezk–Lurie axioms [Lur09b, Theorem
6.1.0.6]), so that if Y = dSp(A) → X is a derived affinoid mapping to X, by (3.39) and
(3.40) one has ( ⋃

i∈I
Ui

)
×X Y =

⋃
i∈I

U ′
i , (3.41)
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where U ′
i := Ui×X Y . By assumption each U ′

i is an analytic subspace of the affinoid space
Y , in the sense of Definition 3.1.19(ii). By looking at the formulas (3.39) and (3.40) with
U ′
i in place of Ui, it is clear that

⋃
i∈I U

′
i is an analytic subspace of the affinoid space Y ,

in the sense of Definition 3.1.19(ii). That is, if {V ′
ij}j∈J (i) is a small collection of rational

opens of Y such that
∐
j∈J (i) V

′
ij → U ′

i is an effective epimorphism, then∐
i∈I

∐
j∈J (i)

V ′
ij →

⋃
i∈I

U ′
i (3.42)

is an effective epimorphism. This completes the proof, c.f. Definition 3.1.19(iii).

We denote the locale of analytic subspaces of X by An(X). It is an immediate conse-
quence of Definition 3.1.20(i) that for any ∞-category D admitting small limits there is
a canonical equivalence of ∞-categories

Shvstrong(X,D) ≃ Shv(An(X),D), (3.43)

where the latter is the category of sheaves on the locale. A basis for the locale An(X) is
given by the affinoid analytic subspaces of X, which are quasi-compact. In particular, the
locale An(X) is locally compact. Therefore by Hoffman-Lawson duality [Joh86, VII,§4]
the locale is spatial; that is, if one sets

|X| := pt(An(X)) (3.44)

to be the topological space of points, i.e., the completely prime filters on the locale, then
there is a canonical isomorphism of locales Ω(|X|) ∼= An(X). Here Ω is the functor which
sends a topological space to its locale of open subsets. In particular, for any ∞-category
D admitting small limits one obtains a canonical equivalence of ∞-categories

Shv(An(X),D) ≃ Shv(|X|,D). (3.45)

It follows by functoriality of the above constructions, that | · | determines a covariant
functor | · | : dRig → Top, where the latter is (the nerve of) the ordinary category of
topological spaces. As it arises from a spatial locale, | · | factors through sober topological
spaces. We will prove that this topological space obeys one of the principles of derived
geometry, which says that “X0 contains all the geometry”. To prove this we will essentially
follow the same recipe as [Man22, §2.9].

Lemma 3.1.24. (i) Let {dSp(Ai) → dSp(A)}ni=1 be a finite collection of derived ra-
tional subdomains of dSp(A). Then

∐n
i=1 |dSp(Ai)| → |dSp(A)| is a surjective

morphism of topological spaces if and only if
∐n
i=1 |dSp(π0Ai)| → |dSp(π0A)| is a

surjective morphism of topological spaces.

(ii) Let X ∈ dRig and let U,U ′ ⊆ X be analytic subspaces. Then one has |U ′| ⊆ |U | if
and only if |(U ′)0| ⊆ |U0|. In particular |U | = |U ′| if and only if |(U ′)0| = |U0|.

Proof. (i): This is an immediate consequence of Definition 3.1.12. (ii): This follows from
(i).

Lemma 3.1.25. Let X = dSp(A) be a derived affinoid space and let V ⊆ X0 be a rational
subdomain. Then there exists a (unique up to contractible choice) rational subdomain
U ⊆ X such that U0 = V as subobjects of X0.
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Proof. This is Scholium 3.1.10(ii).

Corollary 3.1.26. Let X ∈ dRig and let V ⊆ |X0| be an open subset. Then there exists
an analytic subspace U ⊆ X such that |U0| = V .

Proof. The problem is local on X, so we may assume that X is a derived affinoid. Then
the claim follows from Lemma 3.1.25, since the rational subdomains form a basis for the
topology.

Theorem 3.1.27. Let X ∈ dRig. The functor (−)0 induces an isomorphism of topological
spaces |X0|

∼−→ |X|.

Proof. This follows from Lemma 3.1.24 and Lemma 3.1.25, using that | · | takes values in
sober topological spaces (so that |X|, |X0| are determined by their lattice of opens), and
using also that the open subsets biject with analytic subspaces.

Remark 3.1.28. (i) Let X = dSp(A) be an affinoid derived rigid space. The lattice
Special(X) of finite unions of rational subdomains forms a basis for the basis for
the locale An(X), and so completely prime filters on An(X) biject with prime filters
on the lattice Special(X). We note that Special(X) is a bounded distributive lattice
and hence by the Stone representation theorem for distributive lattices, c.f. [Joh86,
II, §3], we see that |X| is a spectral topological space.6 We may also make the
following definition. Let |X|Ber be the collection of maximal filters on Special(X).
This is naturally a compact topological space [Joh86, II, §3] equipped with an injective
morphism |X|Ber → |X|. This construction defines a functor | · |Ber : dAfnd→ Top,
equipped with a natural transformation | · |Ber → | · |.

(ii) In the situation of (ii), [Joh86, II, Proposition 3.7] asserts that the following are
equivalent for a derived affinoid space X:

(a) Whenever U1, U2 ∈ Special(X) with U1∩U2 = ∅, we can find V1, V2 ∈ Special(X)
with V1 ∪ V2 = X, V1 ∩ U2 = ∅ and U1 ∩ V2 = ∅, c.f.7 [Joh86, II, †3.6].

(b) |X|Ber is Hausdorff.

(c) Every prime filter8 x ∈ |X| is contained in a unique maximal filter r(x) ∈
|X|Ber.

(d) The canonical morphism |X|Ber → |X| is a split monomorphism.

In (d) the retraction can be chosen as the canonical map x 7→ r(x) coming from
(c). If any of the above equivalent conditions are satisfied then (it is trivial to
see that) the topology on |X|Ber is the quotient topology induced by the surjection
r : |X|↠ |X|Ber.

(iii) In the situation of (ii), suppose further that A is discrete, so that X is a classical
affinoid. Then the results of [vdPS95] and [Hub93, Corollary 4.5] imply that there
are canonical isomorphisms

|Spa(A,A◦)| ∼= |X| and M(X) ∼= |X|Ber (3.46)

6For arbitrary, non-affinoid X this shows that |X| is locally spectral.
7Note that our situation is dual to Johnstone’s, because we use filters rather than ideals of lattices.
8Here we have identified points of |X| with prime filters on Special(X).
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of functors on the category of classical affinoid algebras, where |Spa(A,A◦)| is the
Huber spectrum andM(X) is the Berkovich spectrum. These isomorphisms fit into
the commutative diagram

|Spa(A,A◦)| |X|

M(A) |X|Ber

∼=

∼=

(3.47)

of functors on the category of classical affinoid algebras. By [vdPS95, Lemma 6], the
morphismM(X)→ |Spa(A,A◦)| is a split monomorphism; therefore the equivalent
conditions in (ii) above are satisfied.

(iv) Now if X ∈ dAfnd is a derived affinoid space then it follows from Theorem 3.1.27
and (iii) that there is a commutative diagram

|Spa(π0A, (π0A)◦)| |X|

M(π0A) |X|Ber

∼=

∼=

(3.48)

of functors on dAfnd. In particular, we see that the equivalent conditions in (ii) are
satisfied for arbitrary derived affinoid spaces X.

(v) As a corollary of [Lur09b, Proposition 7.3.6.10] and Theorem 3.1.27 one sees that
the canonical morphism of ∞-topoi r∗ : Shv(|X|) → Shv(|X|Ber) induced by r :
|X|Ber → |X|, is cell-like. This can be regarded as a higher-categorical generalization
of the characterisation of sheaves of sets on the Berkovich space as “overconvergent
sheaves”.

(vi) The definition of |X|Ber given in (i) above generalises to qcqs derived rigid spaces.
It is not so clear how to generalize this to arbitrary derived rigid spaces. The prob-
lem is that it is not necessarily true that every maximal filter on the locale An(X)
is completely prime9 but for qcqs derived rigid spaces one can circumvent this prob-
lem by using that the lattice has a canonical finitary basis formed by quasi-compact
subspaces.

3.1.4 Quasi-compact and quasi-separated morphisms

Definition 3.1.29. (i) An object X ∈ dRig is called quasi-compact if every cover of X
in the strong topology admits a finite subcover.

(ii) A morphism f : X → Y in dRig is called quasi-compact if, for every quasi compact
Z with a morphism Z → Y , the pullback X ×Y Z is quasi-compact.

(iii) A morphism f : X → Y in dRig is called quasi-separated if its diagonal ∆f : X →
X ×Y X is quasi-compact.

(iv) A object X ∈ dRig is called quasi-separated if the structure morphism X → dSp(K)
is quasi-separated.

9In [vdPS95, §5], the authors do not seem to consider this problem.
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(v) We abbreviate quasi-compact and quasi-separated to qcqs.

Lemma 3.1.30. (i) The classes of quasi-compact and quasi-separated morphisms are
stable under base change and composition.

(ii) Let f and g be composable morphisms in dRig. If fg is quasi-compact and f is
quasi-separated then g is quasi-compact.

Proof. (i): Omitted. (ii): Let us write f : Y → X and g : Z → Y . We can factor g
as Z → Z ×X Y → Y . Here the first map is the base-change of ∆f , and the second
map is the base-change of fg. Therefore, since quasi-compact morphisms are stable under
base-change and composition, we see that g is quasi-compact.

Remark 3.1.31. (i) The notions defined in Definition 3.1.29 make sense in any ∞-
site. In particular they make sense in Shvweak(dAfnd) equipped with the effective
epimorphism topology.

(ii) The weak topology on dAfnd is a finitary Grothendieck topology [Lur11, Definition
3.17]. Therefore, by [Lur11, Proposition 3.19] we obtain the following. Every ob-
ject of dAfnd is quasi-compact and quasi-separated, when viewed as an object of
Shvweak(dAfnd). In particular every affinoid derived rigid space is quasi-compact
object in dRig. Moreover, the ∞-topos Shvweak(dAfnd) is locally coherent [Lur11,
Definition 3.12].

Lemma 3.1.32. Let f : X → Y be a morphism in dRig. The following are equivalent.

(i) f is quasi-compact.

(ii) For every affinoid subspace U ⊆ X, Y ×X U is quasi-compact.

(iii) There exists a covering of U = {Ui}i∈I of Y by affinoid subspaces such that for each
i ∈ I, X ×Y Ui is quasi-compact.

Proof. (i) =⇒ (ii) =⇒ (iii) is obvious. We prove (iii) =⇒ (i). Let g : Z → Y be a
morphism from a quasi-compact object Z ∈ dRig. Choose a finite covering V = {Vj}j∈J of
Z by affinoid subspaces such that V refines the pullback of U along g. Then {X×Y Vj}j∈J
is a finite covering of X ×Y Z by quasi-compact subspaces. Therefore X ×Y Z is quasi-
compact.

Lemma 3.1.33. Let f : X → Y be a morphism in dRig. The following are equivalent.

(i) f is quasi-separated.

(ii) For every pair of affinoid subspaces U, V ⊆ X mapping into a commmon affinoid
subspace of Y , U ×X V is a admits a finite cover by affinoid subspaces of X.

(iii) There exists a cover {Ui}i∈I of Y by affinoid subspaces and for each i ∈ I a cover
{Vj}j∈J (i) of X×Y Ui by affinoid subspaces such that for every j, j′ ∈ J (i), Vj×XVj′
admits a finite cover by affinoid subspaces of X.

Proof. (i) =⇒ (ii) =⇒ (iii) is obvious. To prove (iii) we note that
⋃
i∈I

⋃
j,j′∈J (i) Vj×Ui

Vj′ is a covering of X×Y X by affinoid subspaces and the restriction of ∆f is Vj×X Vj′ →
Vj ×Ui

Vj′ , which is quasi-compact, since affinoids are quasi-separated. Hence, we may
conclude by Lemma 3.1.32(iii).
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Lemma 3.1.34. Let f and g be composable morphisms of dRig. If fg is quasi-separated
then so is g.

Proof. Let us write g : Z → Y and f : Y → X. Choose a covering W of X by affinoid
subspaces and a covering U of Y by affinoid subspaces which refines the pullback of W
along f . For each U ∈ U let V, V ′ be affinoid subspaces of Z mapping into U , and say that
U maps into the affinoid subspace W ∈ W. By quasi-separatedness of fg, the morphism
V ×Z V ′ → V ×X V ′ = V ×W V ′ is quasi-compact, and the latter is affinoid. Therefore
V ×Z V ′ is a finite union of affinoid subspaces of Z. Since such V, V ′ cover Z, we may
appeal to Lemma 3.1.33(iii) to conclude that g is quasi-separated.

Corollary 3.1.35. Let f, g be composable morphisms in dRig. If f and fg are both qcqs
then so is g.

The following facts were used in §2.3.2, but for the purposes of this section it will be
helpful to be more verbose. Recall that we have a diagram of ∞-categories

dRig Shvweak(dAfnd) Psh(dAfnd) dAfnd
L

j
(3.49)

where L stands for sheafification [Lur09b] and j is the ∞-categorical Yoneda embedding.
In particular for any ∞-category D admitting small limits we obtain functors

Shv(Shvweak(dAfnd),D) ↪→ Fun0(Psh(dAfnd)op,D)
∼−→ Fun(dAfndop,D) (3.50)

where Fun0 denotes the limit-preserving functors; the first morphism is induced by pre-
composition with L and the second is induced by precomposition with j. Here we have
equipped Shvweak(dAfnd) with the effective epimorphism topology. The image of this
composite is Shvweak(dAfnd,D), c.f. [Lur18b, Proposition 1.3.1.7].

For our purposes this means the following. In Lemma 3.1.16 we proved that the functor
QCoh belongs to Shvweak(dAfnd,CAlg(PrLst)). We also proved that the weak topology on
dAfnd is subcanonical. Hence, by the above procedure we obtain a functor

QCoh : Shvweak(dAfnd)op → CAlg(PrLst) (3.51)

which is a sheaf in the effective epimorphism topology and which extends QCoh on dAfnd.

Remark 3.1.36. (i) Chasing the definitions, and using that the weak topology is sub-
canonical, we see that for X ∈ Shvweak(dAfndop) one has

QCoh(X)
∼−→ lim

Y ∈dAfndop
/X

QCoh(Y ). (3.52)

In particular the functor QCoh on Shvweak(dAfndop) is right Kan extended from the
full subcategory dAfndop.

(ii) We can also see from (3.50) that the functor QCoh of (3.51) commutes with all
small limits. That is, if (Xk)k∈K is a diagram in Shvweak(dAfnd), then the canonical
morphism

QCoh
(
colim
k∈K

Xk

)
→ lim

k∈K
QCoh(Xk). (3.53)

is an equivalence.
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It is clear from Definition 3.1.20 that sheaves on Shvweak(dAfnd) restrict to sheaves on
dRig in the strong topology. In particular we obtain a functor

QCoh : dRigop → CAlg(PrLst) (3.54)

which is a sheaf on dRig in the strong topology and extends QCoh on dAfnd. For X ∈ dRig
we write “⊗X for the monoidal structure10 on QCoh(X). For each morphism f : X → Y
in dRig we denote the induced pullback functor by

f∗ : QCoh(Y )→ QCoh(X). (3.55)

By construction this is symmetric monoidal and colimit-preserving. Since the categories
are presentable this admits a right adjoint denoted by

f∗ : QCoh(X)→ QCoh(Y ). (3.56)

Since f∗ is symmetric-monoidal and left adjoint to f∗ there is a canonical morphism

f∗“⊗Y id→ f∗(id“⊗Xf∗). (3.57)

If we are given a Cartesian square in dRig:

X ′ Y ′

X Y

f ′

g′
⌜

g

f

(3.58)

the fact that pullbacks are compatible with composition and left adjoint to pushforwards
implies that there is a Beck-Chevalley transformation

g∗f∗ → f ′∗g
′,∗. (3.59)

Lemma 3.1.37. With notations as above, assume that the morphism f : X → Y is qcqs,
c.f. Definition 3.1.29. Then:

(i) (Base change). The morphism (3.59) is an equivalence, for any g : Y ′ → Y .

(ii) (Projection formula). The morphism (3.57) is an equivalence.

(iii) The functor f∗ commutes with all colimits.

Before proving Lemma 3.1.37, we prove an intermediate Lemma.

Lemma 3.1.38. Let f : X → Y be a qcqs morphism in dRig. Then f commutes with
restrictions, that is, if g : Y ′ → Y is an analytic subspace of Y , then the Beck-Chevalley
morphism (3.59) is an equivalence.

Proof. The proof is exactly the same as [Man22, Lemma 2.4.16]; we reproduce it here for
the reader’s convenience. We proceed in stages.

Step 1 : First assume that X and Y are both derived affinoids. One chooses a cover
{V ′

j → Y ′}j∈J of Y ′ by rational subspaces of Y . Let J be the family of finite nonempty
subsets of J and for each J ∈ J set V ′

J :=
⋂
j∈J V

′
j and U ′

J := X ′×Y ′V ′
J . Set gJ : V ′

J → Y

10We have chosen to suppress the fact that this is given by the derived tensor product for X affinoid.
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and g′J : U ′
J → X to be the restrictions and let f ′J : U ′

J → V ′
J be the base-change of f ′.

Each U ′
J and V ′

J is affinoid, and hence by descent and Lemma 3.1.14 one has

g∗f∗ ≃ lim
J∈J

g∗Jf∗ ≃ lim
J∈J

f ′J,∗g
′,∗
J ≃ f

′
∗g

′,∗, (3.60)

proving the Lemma in this case.
Step 2 : Now assume that Y is affinoid and X is an analytic subspace of an affinoid

space Z. Let {Ui → X}ni=1 be a covering by rational subspaces of Z and let I be the family
of all finite nonempty subsets I ⊆ {1, . . . , n}. For I ∈ I we set UI :=

⋂
i∈I Ui. According

to Remark 3.1.18(i) then f∗
∼−→ limI∈I fI,∗ where fI : UI → X is the restriction. Using

that g∗ commutes with finite limits, since we are working with stable ∞-categories, one
deduces base-change in this case from Step 1.

Step 3 : Now assume that Y is affinoid and X is arbitrary. Choose a finite covering
{Ui → X}ni=1 by affinoid subspaces, let I be as before and for each I ∈ I set UI :=

⋂
i∈I Ui.

This is an analytic subspace of an affinoid space and we again have f∗
∼−→ limI∈I fI,∗.

Again using that g∗ commutes with finite limits, one deduces base-change in this case
from Step 2.

Step 4 : Now assume that Y is an analytic subspace of an affinoid space Z and X is
arbitrary. One chooses a cover {Vj → Y }j∈J of Y by rational subspaces of Z. Let J
be the family of finite nonempty subsets of J and for each J ∈ J set VJ :=

⋂
j∈J Vj

and UJ := X ×Y VJ and let fJ : UJ → VJ be the base-change of f . Each VJ is affinoid
and hence by Step 3 each fJ commutes with restrictions. Therefore for each Carte-
sian section (MJ)J∈J ∈ limJ∈J QCoh(UJ) ≃ QCoh(X) one obtains a Cartesian section
(fJ,∗MJ)J∈J ∈ limJ∈J QCoh(VJ) ≃ QCoh(Y ). The functor obtained in this way agrees
with f∗. In particular, since the covering of Y was arbitrary this implies (by definition of
a Cartesian section), that f∗ commutes with restrictions.

Step 5 : For arbitrary X, Y one can take a cover {Vj → Y }j∈J of Y by affinoid
subspaces. Let J be the family of finite subsets of J and for each J ∈ J set VJ :=⋂
j∈J Vj and UJ := X ×Y VJ and let fJ : UJ → VJ be the base-change of f . Each VJ

is an analytic subspace of an affinoid space and hence by Step 4 each fJ commutes with
restrictions. Hence by the same reasoning as in Step 4, f∗ commutes with restrictions.

Proof of Lemma 3.1.37. (i): This is proved in exactly the same way as [Man22, Propo-
sition 2.4.21]. We reproduce the proof here for the reader’s convenience. We proceed in
steps.

Step 1 : Take affinoid coverings U of Y and U ′ of Y ′ such that U ′ refines the pullback of
U along g. For each U ′ ∈ U let tU ′ : U ′ → Y ′ be the inclusion. By descent, the collection
of pullback functors {t∗U ′ : U ′ ∈ U ′} is conservative. Hence it suffices to check (3.59) after
applying each t∗U ′ . By the commutation with restrictions proven in Lemma 3.1.38, this
reduces the proof of the Lemma to the case when Y and Y ′ are both affinoid. In the
remainder of the proof we will make this assumption. In particular this implies that X
and X ′ are both qcqs.

Step 2 : Suppose that X is an analytic subspace of an affinoid space Z. Choose a finite
covering {Ui → X}ni=1 of X by rational subspaces of Z. Let I be the family of finite
nonempty subsets of {1, . . . , n}. For each I ∈ I set UI :=

⋂
j∈I Uj and U ′

I := UI ×Y Y ′.

By descent one has f∗
∼−→ limI∈I fI,∗ and f ′∗

∼−→ limI∈I f
′
I,∗. Each UI and U ′

I is affinoid.
Hence, using that g∗ commutes with finite limits, and Lemma 3.1.14, one has

g∗f∗ ≃ lim
I∈I

g∗fI,∗ ≃ lim
I∈I

f ′I,∗g
′,∗ ≃ f ′∗g′,∗, (3.61)
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proving the Lemma in this case.
Step 3 : Suppose now that X is arbitrary. Choose a finite covering {Ui → X}ni=1 of X

by affinoid subspaces. Let I be the family of finite nonempty subsets of {1, . . . , n}. For
each I ∈ I set UI :=

⋂
j∈I Uj and U ′

I := UI ×Y Y ′. By descent one has f∗
∼−→ limI∈I fI,∗

and f ′∗
∼−→ limI∈I f

′
I,∗. Each UI and U ′

I is an analytic subspace of an affinoid space.
Hence, using that g∗ commutes with finite limits, and Step 2, one has

g∗f∗ ≃ lim
I∈I

g∗fI,∗ ≃ lim
I∈I

f ′I,∗g
′,∗ ≃ f ′∗g′,∗, (3.62)

proving the Lemma in this case.
(ii): Take affinoid coverings V of Y and U of X such that U refines the pullback of

V along f . For each U ′ ∈ U let tU : U → X be the inclusion. By descent the collection
of pullback functors {t∗U : U ∈ U} is conservative. Hence it suffices to check that (3.57)
is an equivalence after applying each t∗U . By the commutation with restrictions proven
in Lemma 3.1.38, and using that pullback functors are symmetric-monoidal, this then
reduces the Lemma to the case when X and Y are both affinoids, which is Lemma 3.1.14.

(iii): Let (Mk)k∈K be a diagram in QCoh(X). We need to show that the canonical
morphism

colim
k∈K

f∗Mk → f∗colim
k∈K

Mk, (3.63)

is an equivalence. Using the same notations as in the proof of (ii), it suffices to check that
(3.63) is an equivalence after applying each t∗U . By the commutation with restrictions
proven in Lemma 3.1.38, and using that each t∗U is colimit-preserving (it is a left adjoint),
one reduces to the case when X and Y are both affinoids, which follows from Lemma
3.1.14.

Corollary 3.1.39. The functor QCoh extends to a six-functor formalism

QCoh : Corr(dRig, qcqs)→ PrL,⊗st . (3.64)

In this six-functor formalism every qcqs morphism f satisfies f! = f∗.

Proof. This is immediate from Lemma 3.1.37 and [Man22, Proposition A.5.10]. To be
clear, in the language of loc. cit. we take the suitable decomposition to be (I, P ) =
(equivalences, qcqs).

3.1.5 Six-functor formalism in derived rigid geometry

We will apply the formalism of §2.3.2 in the following set-up (with notations as in that
section):

⋆ We take V := D(CBornK), so that E := CAlg(D(CBornK))op and we consider
dAfnd ⊆ E . We take τ := weak to be the weak topology on dAfnd.

By Lemma 3.1.2, the assumptions of §2.3.2 are satisfied; we obtain a six-functor formalism

QCoh : Corr(Shvweak(dAfnd), E)⊗ → PrL,⊗st , (3.65)

with the following properties:

⋆ The class E ⊇ rep is stable under disjoint unions, ∗-local on the target, !-local on
the source, is tame, and satisfies E ⊆ δE.
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⋆ Every morphism f ∈ rep satisfies f! ≃ f∗ (Corollary 2.3.16).

The purpose of this section is to prove the following Theorem:

Theorem 3.1.40. In the six-functor formalism (3.65), every qcqs morphism f : X → Y of
derived rigid varieties belongs to the class E. The restriction of this six-functor formalism
along Corr(dRig, qcqs)→ Corr(Shvweak(dAfnd), E) is equivalent to the six-functor formal-
ism constructed in Corollary 3.1.39. In particular, for every qcqs morphism f : X → Y
between objects of dRig there is a canonical equivalence f! ≃ f∗.

The proof is postponed to the end of this subsection. Essentially, we want to prove
that the six-functor formalism QCoh extends uniquely from (dAfnd, all) to (dRig, qcqs).

Lemma 3.1.41. Let X ∈ dRig, and let {Ui → X}ni=1 be a finite covering by analytic
subspaces. Let I be the family of finite nonempty subsets of {1, . . . , n} and for each I ∈ I
set UI :=

⋂
i∈I Ui. Assume that for each I ∈ I, the morphism UI → X is quasi-compact11.

Then the canonical morphism

QCoh!(X)→ lim
I∈I

QCoh!(UI) (3.66)

is an equivalence. Here we are using the six-functor formalism from Corollary 3.1.39.

Proof. Let tI : UI → X be the inclusions. Since QCoh∗ is a sheaf, we know that there is
an equivalence of categories

QCoh∗(X)→ lim
I∈I

QCoh∗(UI) (3.67)

where the functor from left to right sends M → (t∗IM)I and the functor from right to left
sends (MI)I → limI tI,∗MI . In particular the counit idX → limI tI,∗t

∗
I is an equivalence.

In order to prove the Lemma we need to show that (t!I)I induces an equivalence

QCoh!(X)→ lim
I∈I

QCoh!(UI). (3.68)

There is a natural adjunction in which this functor is right adjoint to colimI tI,!. We note
that all the tI are qcqs and therefore tI,! = tI,∗.

Firstly, we will check that the counit is an equivalence. By the previous, we know that
1X

∼−→ limI tI,∗1UI
. Let M ∈ QCoh(X). We have equivalences

M ≃ HomX(1X ,M)

≃ colim
I

HomX(tI,∗1UI
,M)

≃ colim
I

tI,∗HomUI
(1UI

, t!IM)

≃ colim
I

tI,∗t
!
IM.

(3.69)

Here, in the second line we used the property of stable ∞-categories, and in the third
line we used the identity which is adjoint to the projection formula, c.f. Remark 2.3.4(ii).
Therefore the counit is an equivalence. To check that the unit is an equivalence we need
to show that, given (MI)I , for each J ∈ I the natural morphism MJ → t!J colimI tI,∗MI

is an equivalence. Since the relevant ∞-categories are stable, we can exchange t!I with
this finite colimit, and then use base-change, whence the covering becomes split and the
morphism is obviously an equivalence.

11It is automatically quasi-separated, being a monomorphism.
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Corollary 3.1.42. With notations as in Lemma 3.1.41. Set Y :=
∐n
i=1 Ui. Then, the

canonical morphism
QCoh!(X)→ lim

[m]∈∆
QCoh!(Y m+1/X) (3.70)

is an equivalence. In particular t :=
∐n
i=1 ti : Y → X is of universal !-descent.

Proof. This is quite similar to [Man22, Proposition 2.6.3] which is a consequence of the
Lurie-Beck-Chevalley condition [Lur17, Corollary 4.7.5.3].

We first check condition (1) in [Lur17, Corollary 4.7.5.3]. Let (Mm)[m]∈∆op
+

be a t!-split

simplicial object in QCoh(X). In particular, it is t∗t
!-split and in fact tI,∗t

!
I -split for every

I ∈ I. This implies that (skk tI,∗t
!
IM•)k⩾0 is a constant Ind-object. By dual arguments

to [Mat16, Proposition 3.10], it then follows that (skk colimI tI,∗t
!
IM•)k⩾0 is a constant

Ind-object. By Lemma 3.1.41 above this is equivalent to the Ind-object (skkM•)k⩾0. In
this case it is obvious that t! commutes with the geometric realization of M•, since the
relevant ∞-categories are stable.

Now condition (2) in [Lur17, Corollary 4.7.5.3] follows from base-change, and conser-
vativity of t! follows from Lemma 3.1.41. Therefore, the result of loc. cit. gives the desired
equivalence.

Definition 3.1.43. A morphism f : X → Y in Shvweak(dAfnd) is called semi-separated
if the diagonal ∆f : X → X ×Y X belongs to the class rep of representable morphisms.
An object X ∈ Shvweak(dAfnd) is called semi-separated if the morphism X → ∗ is semi-
separated.

Proposition 3.1.44. The six-functor formalism QCoh extends uniquely from (dAfnd, all)
to (dRig, qcqs).

Proof. By [Man22, Proposition A.5.16] the six-functor formalism QCoh extends uniquely
from (dAfnd, all) to (qcssdRig, rep), where qcssdRig denotes the category of quasi-compact
and semi-separated derived rigid spaces, i.e., those having representable diagonal. Now
Corollary 3.1.42 together with [Man22, Proposition A.5.14] implies that QCoh further
extends uniquely to a six-functor formalism on (qcssdRig, all). To be clear, for the appli-
cation of [Man22, Proposition A.5.14] here, one takes the class S of special covers (in the
language of loc. cit.) to be the class of finite coverings by affinoids.

Now [Man22, Proposition A.5.16] again implies that the six-functor formalism QCoh
extends uniquely from (qcssdRig, all) to (qcqsdRig, F ) where F is the collection of edges
which are representable in qcssdRig. Now Corollary 3.1.42 again with [Man22, Proposi-
tion A.5.14] implies that QCoh further extends uniquely to a six-functor formalism on
(qcqsdRig, all) (again, for the application of [Man22, Proposition A.5.14], one takes the
class S of special covers to be the class of finite coverings by affinoids).

Finally, an application of [Man22, Proposition A.5.16] implies that QCoh extends
uniquely from (qcqsdRig, all) to (dRig, qcqs).

Proposition 3.1.45. In the six-functor formalism (3.51), the class E contains all qcqs
morphisms between derived rigid spaces.

Proof. Since the class E is ∗-local on the target one reduces immediately to the case when
f : X → Y is a qcqs morphism with Y affinoid.

We claim that if g : Z → W is a quasi-compact and semi-separated morphism of
derived rigid varieties with affinoid target, there is a canonical equivalence g! ≃ g∗ in this
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six-functor formalism. Indeed, because ∆g ∈ rep, one has ∆g,! ≃ ∆g,∗ and from this one
obtains a canonical morphism g! → g∗, which is the adjoint to the composite

g∗g! ≃ π1,!π∗
2 → π1,!∆g,∗∆∗

gπ
∗
2 ≃ π1,!∆g,!∆

∗
gπ

∗
2 ≃ id; (3.71)

here π1, π2 : Z ×W Z → Z are the projections, and we used base-change. Now this
morphism g! → g∗ is an equivalence: by ∗-descent on the source, this follows if g∗ satisfies
base-change, but we have already proved this in Lemma 3.1.37 above.

Now take a finite cover {Ui → X}i of X by affinoids; then all the tI : UI → X are
quasi-compact12, hence by the above they satisfy tI,! ≃ tI,∗, hence same argument as in
Lemma 3.1.41 and Corollary 3.1.42 above shows that {Ui → X}i is of universal !-descent.
Since the class E is !-local on the source, we conclude.

Proof of Theorem 3.1.40. By Proposition 3.1.45 above, we may consider the restriction
from (Shvweak(dAfnd), E) to (dRig, qcqs). Now the Theorem follows immediately from the
unicity proved in Proposition 3.1.44 together with Corollary 3.1.39.

The results of this subsection, together with §2.3.3, can be used to obtain a theory of
Fourier–Mukai transforms in derived rigid geometry.

Proposition 3.1.46. Let f : Z → Y be a quasi-compact and semi-separated morphism
of derived rigid spaces. Then f is transformable in the sense of Definition 2.3.21.

Proof. One immediately reduces to the case when Y = dSp(B) is a derived affinoid and
hence Z is quasi-compact and semi-separated. Let {Ui}ni=1 be a finite cover of Z by
affinoid subsheaves. Then

∐n
i=1 Ui is affinoid. In Corollary 3.1.42 above, it was proven

that
∐n
i=1 Ui → Z is of universal !-descent. Therefore f is transformable.

Corollary 3.1.47. Let Y be a semi-separated derived rigid space, let f : Z → Y be a
quasi-compact and semi-separated morphism of derived rigid spaces, and let X → Y be
an arbitrary morphism in Shvweak(dAfnd). Then the Fourier-Mukai transform gives an
equivalence of ∞-categories

FM : QCoh(Z ×Y X)
∼−→ FunLQCoh(Y )(QCoh(Z),QCoh(X)), (3.72)

and an equivalence of monoidal ∞-categories

FM : QCoh(Z ×Y Z)
∼−→ FunLQCoh(Y )(QCoh(Z),QCoh(Z)). (3.73)

Proof. Given Proposition 3.1.46, this follows from Theorem 2.3.22.

3.1.6 Infinite covers of universal !-descent

In the remainder of this section, we introduce the following notation. Let X ∈ dRig
and let S ⊆ |X| be a closed subset of the underlying topological space of X. Set V :=
|X| \ S ⊆ |X|, which we may identify with an analytic subspace j : V ↪→ X. We define
full subcategories

ΓS QCoh(X) ⊆ QCoh(X) and LS QCoh(X) ⊆ QCoh(X), (3.74)

12And semi-separated because they are monomorphisms.
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as the full subcategories spanned by objects M such that j∗M ≃ 0, and j!M ≃ 0,
respectively. If we assume that j is quasi-compact, so that j! = j∗, then base-change
implies that the inclusions of these full subcategories admit adjoints given by

ΓS := Fib(id→ j∗j
∗) and LS := Cofib(j!j

! → id). (3.75)

To be clear, ΓS is right adjoint to the inclusion ΓS QCoh(X) ⊆ QCoh(X) and LS is left
adjoint to the inclusion LS QCoh(X) ⊆ QCoh(X). We note that ΓS is colimit-preserving
and LS is limit-preserving.

Lemma 3.1.48. Let X ∈ dRig. Suppose that we are given sequences V1 ⊇ V2 ⊇ V3 ⊇ . . .
and U1 ⊆ U2 ⊆ U3 ⊆ . . . of analytic subspaces of X such that:

⋆ For every n ⩾ 1 the morphisms Vn → X and Un → X are quasi-compact and one
has Un ∪ Vn = X and Un ∩ Vn+1 = ∅.

Let us write Sn := |X| \ Vn and Γn QCoh(X) := ΓSn QCoh(X). Then, there is an equiv-
alence of Pro-systems

“lim”
n

QCoh!(Un) ≃ “lim”
n

Γn QCoh(X), (3.76)

which is compatible with the maps from QCoh(X).

Proof. Let us write jn : Vn → X and tn : Un → X for the inclusions. Let us also abbre-
viate Γn := ΓSn and write incln for the inclusion of the full subcategory Γn QCoh(X) ⊆
QCoh(X). Consider the diagram

· · · ← Γn QCoh(X)
Γntn,∗←−−−− QCoh(Un)

t!n incln+1←−−−−−−

Γn+1 QCoh(X)
Γn+1tn+1,∗←−−−−−−− QCoh(Un+1)← . . . (3.77)

We need to show that there are natural equivalences

t!n incln+1 Γn+1tn+1,∗ ≃ t!n,n+1 (3.78)

and
Γntn,∗t

!
n incln+1 ≃ Γn,n+1. (3.79)

In order to do this, we first observe that the left adjoint to t!n incln+1 is given by tn,∗
since this already factors through Γn+1 QCoh(X): by base-change one has j∗n+1tn,∗ ≃ 0
as Un ∩ Vn+1 = ∅. Therefore, by passing to adjoints, it is enough to show that

t∗n+1 incln+1 tn,∗ ≃ tn,n+1,∗ (3.80)

and
tn,∗t

∗
n incln ≃ incln,n+1 . (3.81)

The equivalence (3.80) is a consequence of base-change. The equivalence (3.81) is a con-
sequence of descent applied to the covering X = Vn ∪ Un.

Lemma 3.1.49. Let X ∈ dRig. Suppose that we are given sequences V1 ⊇ V2 ⊇ V3 ⊇ . . .
and U1 ⊆ U2 ⊆ U3 ⊆ . . . of analytic subspaces of X such that:

⋆ For every n ⩾ 1 the morphisms Vn → X and Un → X and Un ∩ Vn → X are
quasi-compact, and one has Un ∪ Vn = X and Un ∩ Vn+1 = ∅.
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Let us write Sn := |X| \ Vn and Ln QCoh(X) := LSn
QCoh(X). Then, there is an equiv-

alence of Pro-systems

“lim”
n

QCoh∗(Un) ≃ “lim”
n

Ln QCoh(X), (3.82)

which is compatible with the maps from QCoh(X).

Proof. Let us write jn : Vn → X and tn : Un → X for the inclusions. Let us also abbre-
viate Ln := LSn and write incl′n for the inclusion of the full subcategory Ln QCoh(X) ⊆
QCoh(X). Consider the diagram

· · · ← Ln QCoh(X)
Ln tn,∗←−−−− QCoh(Un)

t∗n incl′n+1←−−−−−−

Ln+1 QCoh(X)
Ln+1 tn+1,∗←−−−−−−− QCoh(Un+1)← . . . (3.83)

We need to show that there are natural equivalences

t∗n incl′n+1 Ln+1 tn+1,∗ ≃ t∗n,n+1 (3.84)

and
Ln tn,∗t

∗
n incl′n+1 ≃ Ln,n+1 . (3.85)

In order to do this, we first observe that the right adjoint to t∗n incl′n+1 is given by tn,∗,
since this already factors through Ln+1 QCoh(X): base-change one has j!n+1tn,∗ ≃ 0 as
Un ∩ Vn+1 = ∅. Therefore, by passing to adjoints, it is enough to show that

t!n+1 incl′n+1 tn,∗ ≃ tn,n+1,∗ (3.86)

and
tn,∗t

!
n incl′n ≃ incl′n,n+1 . (3.87)

The equivalence (3.86) is an consequence of base-change. The equivalence (3.87) is a
consequence of Lemma 3.1.41 applied to the covering X = Vn ∪ Un.

Proposition 3.1.50. Let X ∈ dRig. Suppose that we are given sequences V1 ⊇ V2 ⊇
V3 ⊇ . . . and U1 ⊆ U2 ⊆ U3 ⊆ . . . of analytic subspaces of X such that,

⋆ For every n ⩾ 1 the morphisms Vn → X and Un → X are quasi-compact and one
has Un ∪ Vn = X and Un ∩ Vn+1 = ∅.

⋆ One has
⋃
n⩾1 Un = X.

Then, the natural morphism QCoh!(X)→ limn QCoh!(Un) is an equivalence.

Proof. We use notations as in Lemma 3.1.48. We claim that the canonical morphism

QCoh(X)→ lim
n

Γn QCoh(X) (3.88)

sending M 7→ (ΓnM)n, is an equivalence. This functor is right adjoint to the functor
sending (Mn)n 7→ colimnMn. Let M ∈ QCoh(X). We first check that the counit mor-
phism

colim
n

incln ΓnM →M (3.89)
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is an equivalence. By descent, it suffices to check this after applying t∗m for each m ⩾ 0.
By using that t∗m commutes with colimits, and that Um ∩ Vm+1 = ∅, together with base-
change, we see that (3.89) is indeed an equivalence after applying t∗m. Now we check the
unit morphism. We need to show that for each Cartesian section (Mn)n belonging to the
right side of (3.88), and each m ⩾ 0, the morphism

Mm → Γm
(
colim
n

inclnMn

)
, (3.90)

is an equivalence. This follows from the fact that Γm commutes with colimits. Therefore
(3.88) is an equivalence, and we can appeal to Lemma 3.1.48 to deduce the statement of
the Proposition.

Corollary 3.1.51. With notations as in Proposition 3.1.50. Set Y :=
∐
n⩾1 Un. Then,

the canonical morphism

QCoh!(X)→ lim
[m]∈∆

QCoh!(Y m+1/X) (3.91)

is an equivalence. In particular Y → X is of universal !-descent.

Proof. By using that coproducts in dRig are universal, and that QCoh! commutes with
products, this follows from Proposition 3.1.50 and the Bousfield-Kan formula for ∞-
categories [MG19].

Example 3.1.52. Let ϱ > 1, ϱ ∈ |K×| be an element of the valuation group of K, and
let X := A1

K := colimnD
1
K(ϱn) be the rigid-analytic affine line, regarded as an object

of dRig. Here DK(ϱn) := dSp(K⟨ϱ−nT ⟩) is the rigid-analytic disk of radius ϱn. With
notations as in Proposition 3.1.50, one can take Un := D1

K(ϱ2n) and Vn := A[ϱ2n−1,∞),
and the hypotheses of the Proposition are satisfied, where the latter is the rigid-analytic
annulus of radius ⩾ ϱ2n−1.

3.1.7 Local cohomology

In this section, we will develop in different generality an idea that was used in §3.1.6. A
classical theory of local cohomology for rigid- and complex-analytic varieties was developed
by Kisin in [Kis99a].

Let X ∈ dRig and let S ⊆ |X| be a closed subset of the underlying topological space
of X. Then U := |X| \S ⊆ |X| may be identified with an analytic subspace j : U ↪→ X13.
We define

ΓS QCoh(X) ⊆ QCoh(X) (3.92)

as the full subcategory of QCoh(X) spanned by objects M such that j∗M ≃ 0. Since
j∗ commutes with colimits, it follows that the inclusion inclS of this full subcategory
commutes with colimits, and therefore14 admits a right adjoint:

inclS : ΓS QCoh(X) ⇆ QCoh(X) : ΓS , (3.93)

which we have denoted by ΓS . Now suppose in addition that j belongs to the class E of
§3.1.5 so that it is !-able. There is a canonical morphism j! → j∗, defined as the composite

j! → j!j∗j
∗ ≃ j∗, (3.94)

13Indeed, from now on, we may deliberately confuse open subsets U ⊆ |X| with analytic subspaces
U ↪→ X.

14Since the categories are presentable.
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here the first morphism comes from the unit of j∗ ⊣ j∗ and the second is by base-change.
In this section we will be interested in the situation when the canonical morphism j! → j∗

is an equivalence.15 Under this assumption, ΓS QCoh(X) may equivalently be described
as the full subcategory of QCoh(X) spanned by objects M such that j!M ≃ 0. Since j!

commutes with limits, it follows that the inclusion inclS also commutes with limits, and
therefore admits a left adjoint:

LS : ΓS QCoh(X) ⇆ QCoh(X) : inclS , (3.95)

which we have denoted16 by LS . Various formal properties of these functors are listed in
the next Proposition.

Proposition 3.1.53. Let X ∈ dRig and let S ⊆ |X| be a closed subset. Set U := |X| \ S
and let j : U → X be the inclusion of the corresponding analytic subspace. Assume that
j ∈ E and that the canonical morphism j! → j∗ is an equivalence. Then:

(i) There is an equivalence ΓS ≃ Fib(id→ j∗j
∗).

(ii) There are equivalences LS ≃ Cofib(j!j
! → id) ≃ Cofib(j!j

!1X → 1X)“⊗X id, so that
the functor LS is given by tensoring with the idempotent algebra object Cofib(j!j

!1X →
1X). In particular ΓS QCoh(X) is symmetric-monoidal, with the monoidal structure
inherited from QCoh(X) and tensor-unit given by Cofib(j!j

!1X → 1X).

(iii) In the sequence

ΓS(QCoh(X))
inclS−−−→ QCoh(X)

j∗−→ QCoh(U) (3.96)

the right adjoints17 ΓS and j∗ satisfy ΓS inclS ≃ id and j∗j∗ ≃ id.

(iv) In the sequence

QCoh(U)
j!−→ QCoh(X)

LS−−→ ΓS QCoh(X), (3.97)

the composite LS j! ≃ 0, and the right adjoints j! and inclS satisfy j!j! ≃ id and
LS inclS ≃ id. Moreover, the right adjoints j! and inclS commute with colimits, so
that (3.97) is a split-exact sequence in the sense of [Jia23, Appendix B].

Proof. (i): Let us temporarily denote F := Fib(id→ j∗j
∗). We will show that

F inclS ≃ id and j∗F ≃ 0. (3.98)

By using that j!
∼−→ j∗, and base-change, one has

j∗F ≃ Fib(j∗ → j∗j∗j
∗) ≃ Fib(j∗ → j!j∗j

∗) ≃ Fib(j∗ → j∗) ≃ 0. (3.99)

By definition, we have j∗ inclS ≃ 0, so F inclS ≃ id. We can define a counit ε : inclS F →
id coming from that canonical morphism Fib(id → j∗j

∗) → id and a unit morphism
η : id ≃ F inclS , and one can verify the zig-zag identities using (3.98). Therefore, by the
uniqueness of adjoints, we obtain ΓS ≃ Fib(id→ j∗j

∗).

15Note that this is not satisfied for the inclusions jn : Un → X appearing in the proof of Proposition
3.1.50.

16I chose this notation because L looks like Γ upside down, and also because the functor is a left adjoint.
17Note especially here, that we do not assert that the right adjoints j∗ and ΓS commute with colimits.
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(ii): The proof that LS ≃ Cofib(j!j
! → id) is quite similar to the proof of (i) and so

we omit it. For the second part, it suffices to show that there is an natural equivalence

j!j
!1X“⊗X id

∼−→ j!j
!. (3.100)

Indeed, one has equivalences j!j
!1X“⊗X id ≃ j!(j

!1X“⊗U j∗) ≃ j!j
!, where the first is the

projection formula and the second is because j! ≃ j∗ is symmetric-monoidal. Due to
the fact that inclS ΓS is an idempotent monad we see that Cofib(j!j

!1X → 1X) is an
idempotent algebra object and inclS ΓS is given by tensoring with this algebra object.
It follows formally from this that ΓS QCoh(X) is symmetric monoidal with monoidal
structure inherited from QCoh(X) and tensor-unit given by Cofib(j!j

!1X → 1X).18

(iii): The only thing to check is that j∗j∗ → id is an equivalence. As noted above this
can be deduced from the equivalence j!

∼−→ j∗ and base-change.
(iv): The identity LS j! ≃ 0 follows by passing to left adjoints in j! inclS ≃ 0. The

formula j!j! ≃ id can be deduced from the equivalence j!
∼−→ j∗ and base-change.

Let X ∈ dRig. In the remainder of this section, we will produce examples of inclusions
j : U → X of analytic subspaces satisfying j!

∼−→ j∗, and also give some different formulas
for the functors ΓS and LS .

Proposition 3.1.54. Let X ∈ dRig and let S ⊆ |X| be a closed subset of the underlying
topological space. Set U := |X| \S ⊆ |X|. Suppose that we are given sequences V1 ⊇ V2 ⊇
· · · ⊇ S and U1 ⊆ U2 ⊆ · · · ⊆ U of open subsets of |X| such that:

⋆ For every n ⩾ 1 the morphisms Vn → X and Un → X are quasi-compact and one
has Un ∪ Vn = X and Un ∩ Vn+1 = ∅.

⋆ One has
⋃
n⩾1 Un = U .

Then:

(i) The morphism j : U → X belongs to the class E, i.e., it is !-able.

(ii) Let kn : Vn → X be the inclusions. Then:

(a) There is an equivalence of functors colimn kn,∗k
∗
n ≃ Cofib(j!j

! → id).

(b) There is an equivalence of functors limn kn,∗k
!
n ≃ Fib(id→ j∗j

∗).

(iii) The canonical morphism j! → j∗ is an equivalence.

Before the proof, we give an example.

Example 3.1.55. Let X = dSp(A) ∈ dRig be an affinoid and let I ⊆ π0A be an ideal.
Choose generators f1, . . . , fk for I. By using the homeomorphism r : |Spa(π0A, (π0A)◦)| ∼−→
|X| coming from Remark 3.1.28, we may define open subsets Un and Vn of |X| by:

r−1Vn := {x ∈ |Spa(π0A, (π0A)◦)| : |fi|x ⩽ p−2n for all 1 ⩽ i ⩽ k},
r−1Un := {x ∈ |Spa(π0A, (π0A)◦)| : |fi|x ⩾ p−(2n+1) for some 1 ⩽ i ⩽ k}.

(3.101)

Then:

18This can be regarded as a “categorification” of the following. Let R be a commutative ring and let
e ∈ R be an idempotent. Then I := ker(R → Re) is a ring, isomorphic to (1 − e)R, with multiplication
inherited from R and unit 1− e.
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(i) The sequences {Vn}n⩾1 and {Un}n⩾1 satisfy the hypotheses of Proposition 3.1.54,
with

r−1S = {x ∈ |Spa(π0A, (π0A)◦)| : |fi|x = 0 for all 1 ⩽ i ⩽ k},
r−1U = {x ∈ |Spa(π0A, (π0A)◦)| : |fi|x > 0 for some 1 ⩽ i ⩽ k}.

(3.102)

(ii) The sequence {Vn}n⩾1 is a cofinal system of open neighbourhoods of S in |X|. Indeed,
let S ⊆ V ′ ⊆ |X| be another open subset. Then {V ′} ∪ {Un}n⩾1 is a covering of the
quasi-compact space |X|. Therefore V ′ ∪ Um = |X|, for some m ⩾ 1. In particular
Vm+1 ⊆ V ′.

Proof of Proposition 3.1.54. (i): By Corollary 3.1.51, the morphism
∐
n⩾1 Un → U is of

universal !-descent. Since the class E ⊇ qcqs is stable under disjoint unions and !-local on
the source (c.f. Theorem 3.1.40) we conclude that j ∈ E.

(ii)(a): Let jn : Un → X be the inclusions. By Proposition 3.1.50, we know that
Cofib(j!j

! → id) ≃ colimn Cofib(jn,∗j
!
n → id). By Lemma 3.1.48, we know that

colim
n

jn,∗j
!
n ≃ colim

n
Fib(id→ kn,∗k

∗
n) ≃ Fib(id→ colim

n
kn,∗k

∗
n), (3.103)

where we used the property of stable ∞-categories. By using the property of stable
∞-categories this also implies that Cofib(colimn jn,∗j

!
n → id) ≃ colimn kn,∗k

∗
n, proving

(ii)(a).
(ii)(b): Again let jn : Un → X be the inclusions. By descent we know that Fib(id →

j∗j
∗) ≃ limn Fib(id→ jn,∗j

∗
n). By Lemma 3.1.49 we know that

lim
n
jn,∗j

∗
n ≃ lim

n
Cofib(kn,∗k

!
n → id) ≃ Cofib(lim

n
kn,∗k

!
n → id). (3.104)

By using the property of stable ∞-categories this implies that Fib(id → lim
n
jn,∗j

∗
n) ≃

lim
n
kn,∗k

!
n, proving (ii)(b).

(iii): Let k′n : V ′
n := Vn ∩ U → U and j′n : Un → U be the inclusions. By base-change,

and since j∗ is exact and colimit-preserving we deduce that colimn k
′
n,∗k

′,∗
n ≃ Cofib(j! →

j∗). Therefore, in order to prove the claim, it is enough to show that

colim
n

k′n,∗k
′,∗
n ≃ 0. (3.105)

By descent, it is enough to check this after applying j∗m for each m ⩾ 1. The functors
j∗m commute with colimits, and by base change, using that Um ∩ Vm+1 = ∅, one has
j∗mk

′
m+1,∗ ≃ 0. Therefore (3.105) is an equivalence and j! ≃ j∗.

3.1.8 Zariski-closed immersions

Definition 3.1.56. Let f : X → Y be a morphism in dRig. We say that f is a Zariski-
closed immersion if there exists a covering {Ui → Y }i∈I of Y by affinoid subspaces Ui =
dSp(Ai) such that, for each i ∈ I, the pullback X ×Y Ui is represented by an affinoid
dSp(Bi) and the induced morphism Ai → Bi is surjective on π0.

Lemma 3.1.57. (i) The class of Zariski-closed immersions is stable under composition
and base-change.

(ii) Every Zariski-closed immersion is quasi-compact.
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Proof. (i): Omitted. (ii): Follows from Lemma 3.1.32(iii).

Lemma 3.1.58. Let f : X → Y be a Zariski-closed immersion in dRig. The image of
|X| under |f | is a closed subset of |Y |.

Proof. One reduces to the case when Y = dSp(A) is an affinoid and X = dSp(B) →
dSp(A) is a morphism of affinoids such that π0A→ π0B is surjective. By Remark 3.1.28
it is then sufficient to show that the image of Spa(π0B, (π0B)◦) → Spa(π0A, (π0A)◦) is
closed. This is a consequence of [Hub96, 1.4.1].

3.1.9 Zariski-open immersions

Definition 3.1.59. A morphism f : X → Y in dRig is called a Zariski-open immersion if
there exists a Zariski-closed immersion Z → Y such that f is equivalent to the inclusion
of the analytic subspace U ↪→ Y corresponding to |Y | \ |Z| ⊆ |Y |.

Proposition 3.1.60. Let j : X → Y be a Zariski-open immersion in dRig. Then:

(i) The morphism j : X → Y belongs to the class E, i.e., it is !-able.

(ii) The canonical morphism j! → j∗ is an equivalence.

Proof. (i): By using that E is ∗-local on the target one reduces to the case when Y is an
affinoid. Then the claim follows from Example 3.1.55 and Proposition 3.1.54(i).

(ii): We make the following temporary definitions. A Zariski-closed immersion T → S
is called basic if S = dSp(A) and T = dSp(B) are both affinoid and π0A → π0B is
surjective. A Zariski-open immersion R→ S is called basic if S is affinoid and there exists
a basic Zariski-closed immersion T → S such that R corresponds to the complement of
|T | in |S|. Now, we proceed in steps.

Step 1 : When X → Y is a basic Zariski-open immersion, the statement follows from
Example 3.1.55 and Proposition 3.1.54(iii).

Step 2 : Now assume that Y is an analytic subspace of an affinoid subspace Y ′, and
X → Y is induced by a basic Zariski-open immersion X ′ → Y ′. Choose a cover {Ui →
Y }i∈I be a covering of Y by affinoid subspaces of Z. Let I be the family of finite
nonempty subsets of I . For each I ∈ I set UI :=

⋂
i∈I Ui and let tI : UI → Y be the

inclusions. Each X∩UI → UI is a basic Zariski-open immersion. By descent, base-change
and using that j! commutes with limits, one has

j! ≃ lim
I∈I

j!tI,∗t
∗
I ≃ lim

I∈I
t′I,∗j

′,!t∗I ≃ lim
I∈I

t′I,∗j
′,∗t∗I ≃ lim

I∈I
t′I,∗t

′,∗
I j

∗ ≃ j∗, (3.106)

where we used Step 1.
Step 3 : Now Y is arbitrary. By the Definition 3.1.56 of a Zariski-closed immersion, we

may choose a cover {Ui → Y }i∈I be a covering of Y by affinoid subspaces such that each
Ui ∩ Y → Ui is a basic Zariski-open immersion. Let I be the family of finite nonempty
subsets of I . For each I ∈ I set UI :=

⋂
i∈I Ui and let tI : UI → Y be the inclusions.

We proceed as in Step 2, using the result of Step 2, to conclude that j! → j∗ is an
equivalence.

3.1.10 Algebras of germs

For the sake of brevity let us introduce the following notations:
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Definition 3.1.61. We define dAlg := CAlg(D⩾0(CBornK)) and dAff := dAlgop. The
object of dAff corresponding to A ∈ dAlg is denoted by the formal expression dSp(A). For
such we define QCoh(dSp(A)) := ModAD(CBornK). We define PStk := PSh(dAff) =
Fun(dAlg,∞Grpd).

Definition 3.1.62. Let X = dSp(A) ∈ dAfnd be a derived affinoid space and let i :
dSp(B) = Z → X be a Zariski-closed immersion defined by a morphism A→ B which is
surjective on π0. The algebra of germs along Z is defined to be

A†
Z := colim

U⊇|Z|
AU (3.107)

where the colimit is taken in CAlg(D⩾0(CBornK)) and runs over all (affinoid) opens U ⊇
|Z|. We denote the corresponding object of dAff by (Z ⊆ X)†.

Lemma 3.1.63. With notations as in Definition 3.1.60. Let ι : (Z ⊆ X)† → X be the
canonical morphism. Then ι is a homotopy monomorphism.

Proof. We must show that A → A†
Z is a homotopy epimorphism. Since the class of

homotopy epimorphisms is stable under colimits, this follows immediately from the fact
that each A→ AU is a homotopy epimorphism.

Proposition 3.1.64. With notations as in Definition 3.1.62. There is a natural equiva-
lence of ∞-categories

QCoh((Z ⊆ X)†) ≃ ΓZ QCoh(X). (3.108)

Proof. By Proposition 3.1.60 and Proposition 3.1.53 there is an equivalence between
ΓZ QCoh(X) and algebra objects in QCoh(X) over the idempotent algebra object

Cofib(j!j
!1X → 1X). (3.109)

By Proposition 3.1.54(ii) and Example 3.1.55 we can identify this idempotent algebra

object with A†
Z . Now the Proposition follows from the transitivity19 property

ModA†
Z

ModA QCoh(∗) ≃ ModA†
Z

QCoh(∗). (3.110)

Corollary 3.1.65. With notations as in Definition 3.1.60. Let ι : (Z ⊆ X)† → X be the
canonical morphism. Let U be the open subspace of X corresponding to the complement
of |Z|, and let j : U ↪→ X be the inclusion. In the sequence

QCoh(U)
j!−→ QCoh(X)

ι∗−→ QCoh((Z ⊆ X)†) (3.111)

the composite ι∗j! ≃ 0 and the right adjoints j! and ι∗ satisfy j!j! ≃ id and ι∗ι∗ ≃ id.
Moreover the right adjoints ι∗ and j! commute with colimits.

Proof. Combine Proposition 3.1.53, Proposition 3.1.60 and Proposition 3.1.64.

19For any symmetric monoidal ∞-category (V ,⊗) such that ⊗ is compatible with colimits separately
in each variable, and any morphism A → B of commutative algebra objects in V , there is an equivalence
of ∞-categories

ModB(ModA V ) ≃ ModB V ;

on the left side here, we view B as a commutative algebra object in ModA V . This is proved by applying
Barr–Beck–Lurie to the forgetful functor ModA V → ModB V .
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Definition 3.1.66. We define the category Pairs as the full subcategory of Fun(∆1, dAfnd)
on objects Z = dSp(B)→ dSp(A) = X induced by a morphism A→ B which is surjective
on π0.

The category Pairs has fiber products:

(Z → X)×(Z′→X′) (Z ′′ → X ′′) = (Z ×Z′ Z ′′ → X ×X′ X ′′). (3.112)

Lemma 3.1.67. The functor Pairs → dAff : (Z → X) 7→ (Z ⊆ X)† preserves fiber
products.

Proof. We use notations as in (3.112). Say X = dSp(A) and Z = dSp(B), and similarly
for Z ′, X ′, etc. Say π0A→ π0B is defined by an ideal I = (f1, . . . , fr) and π0A

′′ → π0B
′′

is defined by I ′ = (f ′1, . . . , f
′
s). Then π0(A⊗A′ A′′)→ π0(B ⊗B′ B′′) is defined by

(f1 ⊗ 1, . . . , fr ⊗ 1, 1⊗ f ′′1 , . . . , 1⊗ f ′′s ). (3.113)

Using the homeomorphisms r : |Spa(π0A, (π0A)◦)| ∼−→ |X|, etc., we may define (rational)
open subsets Vn of X as in Example 3.1.55:

r−1Vn := {x ∈ |Spa(π0A, (π0A)◦)| : |fi|x ⩽ p−n for all 1 ⩽ i ⩽ k}. (3.114)

and similarly for V ′′
n . Then by cofinality of this system we find that the pushout of the

algebras of germs is

colim
n

AVn
“⊗L

A′A′′
V ′′
n

= colim
n

(A“⊗L

A′A′′)Vn×X′V ′′
n

(3.115)

and we note that Vn ×X V ′′
n is the open subset with

r−1(Vn ×X V ′′
n ) = {x : |fi ⊗ 1| ⩽ p−n, |1⊗ f ′′j | ⩽ p−n for all i, j}, (3.116)

which is again a cofinal system of neighbourhoods of Z ×Z′ Z ′′.

Lemma 3.1.68. Let (Z → X) ∈ Pairs. Let affinoid opens {Ui}ni=1 of X be given such
that |Z| ⊆

⋃
i Ui. Then:

(i) Let I be the family of finite nonempty subsets of {1, . . . , n}. The natural morphism

QCoh∗((Z ⊆ X)†) −→ lim
I∈I

QCoh∗((ZI ⊆ XI)
†), (3.117)

is an equivalence; here ZI := UI ×X Z.

(ii) Let Y :=
∐
i Ui and S :=

∐
i Zi → Y . Then, the canonical morphism

QCoh((Z ⊆ X)†)→ lim
[m]∈∆op

QCoh((S ⊆ Y )†,m+1/(Z⊆X)†) (3.118)

is an equivalence.

Proof. Let us say X = dSp(A). According to [Kis99b, Lemma 2.3] and Lemma 3.1.9, the
system of rational opens of X containing |Z|, is a cofinal system of open neighbourhoods
of |Z| in X. Hence we may find a rational open subset V with |Z| ⊆ V ⊆

⋃
i Ui. For such

V one then has
AV

∼−→ lim
(i1,...,ik)∈I

AVi1
“⊗L

A . . .“⊗L

AAVik
, (3.119)
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where Vi = V ∩Ui, c.f. the proof of Lemma 3.1.16 and especially (3.34). By compact gen-
eration (Proposition 2.1.49), filtered colimits commute with finite limits (Lemma 2.1.42),
and hence we obtain

A†
Z

∼−→ lim
(i1,...,ik)∈I

A†
Zi1

“⊗L

A . . .“⊗L

AA
†
Zik

, (3.120)

which by a standard argument implies (i). This also shows that A†
Z →

∏
iA

†
Zi

is descend-
able, which gives (ii).

3.1.11 Six-functor formalism for prestacks

In the next section we will work in a “bigger” six-functor formalism constructed as follows.
We use notations as in Definition 3.1.61. We will apply the formalism of §2.3.2 in the
following set-up (with notations as in that section):

⋆ We take V := D(CBornK), so that E := CAlg(D(CBornK))op and we consider dAff =
CAlg(D⩾0(CBornK))op ⊆ E . We take τ to be the trivial topology on dAff. We define
PStk := Psh(dAff).

It is clear that the assumptions of §3.2 are satisfied and hence we obtain:

Theorem 3.1.69. The functor QCoh extends to a six-functor formalism

QCoh : Corr(PStk, ‹E)⊗ → PrL,⊗st (3.121)

such that the class ‹E ⊇ rep is stable under disjoint unions, ∗-local on the target, !-local
on the source, is tame and satisfies ‹E ⊆ δ‹E. Further, every morphism f ∈ rep satisfies
f! ≃ f∗.

3.2 Stratifications and analytic D-modules

3.2.1 Internal groupoid objects in an ∞-category

Definition 3.2.1. Let C be an ∞-category admitting all fiber products.

(i) A groupoid object in C is a simplicial object X ∈ sC := Fun(N(∆op),C ) such that,
for every n ⩾ 0 and for all subsets S, S′ ⊆ [n] with S ∪S′ = [n] and |S ∩S′| = 1, the
diagram

X([n]) X(S)

X(S′) X(S ∩ S′)

(3.122)

is Cartesian.

(ii) Assume that C admits geometric realizations. Let X• be a groupoid object in C . We
obtain from X• an augmented simplicial object of C by setting X−1 := colim[n]∈∆op Xn.
We say that X• is effective if the canonical morphism X• → N(X0 → X−1) is an
equivalence in sC .

Remark 3.2.2. (i) Due to Definition 3.1.5(i), Definition 3.2.1(ii) is equivalent saying
that X0 → X−1 is an effective epimorphism.

(ii) If C is an ∞-topos then every groupoid object in C is effective. Indeed, this is one
of the Giraud-Rezk-Lurie axioms [Lur09b, Theorem 6.1.0.6].
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Definition 3.2.3. Let C be an ∞-category admitting all fiber products. We say that
a morphism X• → Y• in sC is a homotopy Kan fibration if for all n ⩾ 1 and for all
0 ⩽ k ⩽ n, the canonical morphism

X(∆n)→ X(Λnk )×Y (Λn
k )
Y (∆n) (3.123)

is an effective epimorphism.

Remark 3.2.4. Let C be an ∞-category admitting all fiber products. It is immediate that
the class of homotopy Kan fibrations in sC is stable under composition and base-change.

Lemma 3.2.5. Let C be an ∞-category admitting all finite limits and geometric realiza-
tions. Let f : X• → Y• be a morphism between groupoid objects of C . Then, the following
are equivalent.

(i) f is a homotopy Kan fibration,

(ii) For i = 0, 1, the morphisms

X(∆1)→ X(Λ1
i )×Y (Λ1

i )
Y (∆1), (3.124)

are effective epimorphisms.

Proof. (i) =⇒ (ii): This is trivial.
(ii) =⇒ (i): Due to [Lur09b, Proposition 6.1.2.6(3)], for every n ⩾ 2 and 0 ⩽ k ⩽ n

the canonical morphism X(∆n)→ X(Λnk ) is an equivalence. More precisely the result of
loc. cit. says that the morphism C/X(∆n) → C/X(Λn

k )
, induced by postcomposition, is an

equivalence of ∞-categories. In particular, [X(∆n) → X(Λnk )] is terminal in C/X(Λn
k )

, so
we can deduce the claim from uniqueness of the terminal object. Obviously, the same is
true for Y . Therefore, the condition (3.123) in the definition of a homotopy Kan fibration,
is automatically satisfied for every n ⩾ 2.

Proposition 3.2.6. Let X be an ∞-topos. Let X• → Y• and Z• → Y• be morphisms in
sX . Assume that X• → Y• is a homotopy Kan fibration. Then, the canonical morphism

|X• ×Y• Z•| → |X•| ×|Y•| |Z•| (3.125)

is an equivalence. Here we have abbreviated |X•| := colim[n]∈∆op Xn, etc.

Proof. The case when X = ∞Grpd is proven in [MG15, Corollary 6.7]. The case when
X = Psh(D ,∞Grpd) for some ∞-category D , follows from the case when C = ∞Grpd,
because limits and colimits in Psh(D ,∞Grpd) are computed pointwise, c.f. [Lur09b,
§5.1.2]. Now if X is an∞-topos we may write X as a localization L : Psh(D ,∞Grpd) ⇆
X : i for some D , where L is left exact. We recall that colimits in X are computed by first
taking the colimit in Psh(D ,∞Grpd) and then applying L, whence the claim follows.

Let X be an ∞-topos. Motivated by [MG15], we define two classes of morphisms
(which we call weak equivalences and fibrations) in sX as follows:

(W) The weak equivalences are precisely the morphisms in sX which are sent to equiv-
alences under the geometric realization functor | · | : sX →X .

(F) The fibrations are the homotopy Kan fibrations.
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For morphisms X• → Y• and Z• → Y• in sX , Proposition 3.2.6 above gives us a strategy
to calculate the fiber product |X•| ×|Y•| |Z•| as follows. One finds a factorization of the
morphism X• → Y• as X• → X ′

• → Y•, where the first morphism is a weak equivalence
and the second is a homotopy Kan fibration. Then, by Proposition 3.2.6, one has

|X•| ×|Y•| |Z•| ≃ |X ′
•| ×|Y•| |Z•| ≃ |X ′

• ×Y• Z•|. (3.126)

An example of this is the following. We may define an endofunctor −⊕ [0] of the simplex
category ∆, where ⊕ denotes the operation of ordinal sum. By precomposition, we then
obtain an endofunctor Dec0 : sX → sX , called décalage. For X• ∈ sX , one has
(Dec0X•)n = Xn+1.

Lemma 3.2.7. Let X be an ∞-topos and let X• be a groupoid object in X . The mor-
phism X0 → X•, where the former is viewed as a constant simplicial object, can be factored
as

X0 → Dec0X• → X•, (3.127)

where the first morphism is a weak equivalence and the second is a homotopy Kan fibration.
In particular, for any morphism Y• → X• in sX the fiber product X0 ×|X•| |Y•| can be
computed as |(Dec0X•)×X• Y•|.

Proof. That X0 → Dec0X• is a weak equivalence is an immediate consequence of [Lur09b,
Lemma 6.1.3.16]. To check that Dec0X• → X• is a homotopy Kan fibration, by Lemma
3.2.5 it suffices to show that X2 → X1 ×X0

X1 is an effective epimorphism, but this is
even an equivalence (by assumption, X• is a groupoid object).

3.2.2 Formal theory of stratifications

Let f : X → Y be a morphism in dAfnd. Then, for every n ⩾ 1, the diagonal morphism
∆n,f : X → Xn/Y determines an object of the category Pairs (Definition 3.1.66). Hence
we may consider the germ (X ⊆ Xn/Y )†. In particular, the following definition makes
sense.

Definition 3.2.8. Let f : X → Y be a morphism in dAfnd.

(i) The infinitesimal groupoid of f , denoted Inf(X/Y ), is the simplicial object of PStk
with

Inf(X/Y )n := (X ⊆ Xn+1/Y )†. (3.128)

(ii) The stratifying stack of f , denoted (X/Y )str, is defined to be the object of PStk given
by

(X/Y )str := colim
[n]∈∆op

Inf(X/Y )n. (3.129)

(iii) Let X ∈ dAfnd. We define the infinitesimal groupoid of X to be Inf(X) := Inf(X/∗)
and the stratifying stack of X to be Xstr := (X/∗)str.

Remark 3.2.9. (i) Let f : X → Y be a morphism in dAfnd. Then Inf(X/Y ) is a
groupoid object of dAff in the sense of Definition 3.2.1. This follows from Lemma
3.1.67.

(ii) For a fixed object Y ∈ dAfnd, these constructions define functors

Inf(−/Y ) : dAfnd/Y → sdAfnd/Y and (−/Y )str : dAfnd/Y → PStk/Y .
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(iii) Let k : X → Z, h : Y → Z be morphisms of dAfnd and let f : X → Y be a morphism
over Z. Due to Lemma 3.2.5, the following are equivalent:

(a) Inf(X/Z)→ Inf(Y/Z) is a homotopy Kan fibration,

(b) The morphism (X ⊆ X ×Z X)† → (X ⊆ X ×Z Y )† induced by (id, f), is an
effective epimorphism in PStk. Here the latter morphism is the graph of f .

Example 3.2.10. (i) Let X ∈ dAfnd and let X → dSp(K) be the structure morphism.
Then, by Remark 3.2.9(iii), the morphism Inf(X) → Inf(dSp(K)) ≃ dSp(K), is a
homotopy Kan fibration.

(ii) Let X ∈ dAfnd and let f : U → X be the inclusion of an affinoid open subspace.
Then (U ⊆ U ×U)† → (U ⊆ U ×X)† is an equivalence in dAfnd because U ×U is a
neighbourhood of U (embedded via the graph) in U×X. Hence, by Remark 3.2.9(iii),
Inf(U)→ Inf(X) is a homotopy Kan fibration.

(iii) If U → X is any morphism in dAfnd such that U → U ×X U is an open immersion,
then the canonical morphism U → (U/X)str is an equivalence. This is because, for
each n ⩾ 1, there is an equivalence U ≃ (U ⊆ Un+1/X)†, by construction of the
germ. In particular, this includes the case of (ii) above.

Lemma 3.2.11. Let f : X → Y and g : Y ′ → Y be morphisms in dAfnd. Set X ′ :=
X ×Y Y ′. Assume that the induced morphism Inf(X) → Inf(Y ) is a homotopy Kan
fibration. Then:

(i) The canonical morphism (X/Y )str → Xstr ×Ystr
Y is an equivalence.

(ii) The canonical morphism X ′
str → Xstr ×Ystr Y

′
str is an equivalence.

(iii) The morphism Inf(X ′)→ Inf(Y ′) is also a homotopy Kan fibration and the canonical
morphism (X ′/Y ′)str → (X/Y )str ×Y Y ′ is an equivalence.

(iv) Assume that there are morphisms h : Y → Z and k : X → Z in dAfnd making f
into a morphism over Z. Then, the induced morphism Inf(X/Z) → Inf(Y/Z) is a
homotopy Kan fibration and the natural morphism (X/Y )str → (X/Z)str×(Y/Z)str Y
is an equivalence.

Proof. (i): We regard Y as a constant simplicial object, equipped with a morphism Y →
Inf(Y ) induced by the diagonal morphisms

Y → (Y ⊆ Y n+1)† = Inf(Y )n. (3.130)

In particular, we calculate

Y ×Inf(Y )n Inf(X)n ≃ (X ⊆ Xn+1/Y )† = Inf(X/Y )n. (3.131)

Hence, by Proposition 3.2.6, we see that (X/Y )str
∼−→ Xstr ×Ystr

Y .
(ii): We calculate

Inf(X)n ×Inf(Y )n Inf(Y ′)n ≃ (X ×Y Y ′ ⊆ (X ×Y Y ′)n+1)† ≃ Inf(X ′)n, (3.132)

and so by Proposition 3.2.6 again we conclude that X ′
str

∼−→ Xstr ×Ystr
Y ′
str.

86



Arun Soor

(iii): By the calculation (3.132), and the fact that homotopy Kan fibrations are stable
under base-change, we see that Inf(X ′) → Inf(Y ′) is a homotopy Kan fibration. We
calculate

Y ′ ×Y Inf(X/Y )n ≃ Y ′ ×Y (X ⊆ Xn+1/Y )†

≃ (X ′ ⊆ X ′,n+1/Y ′
)†

= Inf(X ′/Y ′)n.

(3.133)

The morphism Inf(X/Y ) → Y is always a homotopy Kan fibration, by Lemma 3.2.5.
Therefore by Proposition 3.2.6 we conclude that (X ′/Y ′)str

∼−→ (X/Y )str ×Y Y ′.
(iv): We note that Inf(X/Z) → Inf(Y/Z) is the pullback of Inf(X) → Inf(Y ) along

Inf(Y/Z) → Inf(Y ), and is therefore a homotopy Kan fibration. For each n ⩾ 0 the
following square is also Cartesian:

(X ⊆ Xn+1/Y )† Y

(X ⊆ Xn+1/Z)† (Y ⊆ Y n+1/Z)†

(3.134)

so that Inf(X/Y )
∼−→ Inf(X/Z)×Inf(Y/Z) Y . Therefore, by Proposition 3.2.6 we conclude

that (X/Y )str
∼−→ (X/Z)str ×(Y/Z)str Y .

Lemma 3.2.12. Let f : X → Y be a morphism in dAfnd. The canonical morphism
X → (X/Y )str belongs to the class rep of representable morphisms in PStk.

Proof. Let us take Z ∈ dAff ⊆ PStk with a morphism Z → (X/Y )str; we need to show that
the pullback Z×(X/Y )strX is representable. In any category of presheaves, all representable
objects are projective. In particular the map Z → (X/Y )str has the right lifting property
against effective epimorphisms, so there exists a lift Z → X, up to homotopy. Using this
lift, and the associativity of fiber products, we deduce that

Z ×(X/Y )str X ≃ Z ×X X ×(X/Y )str X ≃ Z ×X (X ⊆ X ×Y X)†, (3.135)

where we used that groupoid objects are effective. Since dAff is closed under fiber prod-
ucts, we deduce that X → (X/Y )str belongs to rep.

Definition 3.2.13. A morphism f : X → Y in dAfnd is called good if:

⋆ The morphism Inf(X)→ Inf(Y ) is a homotopy Kan fibration,

⋆ The morphism X → (X/Y )str is of universal !-descent, with respect to the six-functor
formalism on PStk (Theorem 3.1.69). This condition makes sense by Lemma 3.2.12.

Lemma 3.2.14. (i) The class of good morphisms in dAfnd is stable under base-change
and composition. The functor (−)str : dAfnd → PStk preserves finite products, and
pullbacks of edges in the class good.

(ii) If f : X → Y is good then fstr : Xstr → Ystr belongs to the class E of !-able morphisms
in the six-functor formalism on PStk (Theorem 3.1.69).

Before proving the Lemma, we make note of an immediate Corollary.
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Corollary 3.2.15. The functor (−)str induces a symmetric-monoidal functor

(−)str : Corr(dAfnd, good)→ Corr(PStk, ‹E). (3.136)

where ‹E is the class of edges in PStk coming from Theorem 3.1.69.

Proof of Lemma 3.2.14. (i): All of these properties follow from Lemma 3.2.11.

(ii): Since the class ‹E is ∗-local on the target, it suffices to check that fstr ∈ ‹E after
pullback along a morphism Z → Ystr from a representable object of PStk. Again, since
representable objects are projective, this lifts to a morphism Z → Y , up to homotopy.
Using this morphism and the associativity of fiber products we see that

Z ×Ystr
Xstr ≃ Z ×Y Y ×Ystr

Xstr ≃ Z ×Y (X/Y )str, (3.137)

where we used Lemma 3.2.11(i). Therefore, since the class ‹E is stable under base-change,

it suffices to show that (X/Y )str → Y belongs to ‹E. The morphism X → Y factors as
X → (X/Y )str → Y , where the first morphism is of universal !-descent by assumption.

Therefore, since the class ‹E is !-local on the source, we deduce that (X/Y )str → Y ∈ ‹E.

By Corollary 3.2.15 we now have a symmetric-monoidal functor

(−)str : Corr(dAfnd, good)→ Corr(PStk, ‹E). (3.138)

By post-composing (−)str with the six-functor formalism QCoh on (PStk, ‹E), we obtain
a six-functor formalism

Strat := QCoh ◦(−)str : Corr(dAfnd, good)→ CAlg(PrLst). (3.139)

We would like to extend this six-functor formalism to all objects of dRig and also to a much
larger class than just the good morphisms. Unfortunately, the class of good morphisms is
not closed under the formation of diagonals, so we cannot apply the extension formalism
of §2.3.1 and we have to proceed in a more ad-hoc manner.

Definition 3.2.16. We define Estr to be the class of morphisms f : X → Y in dRig which
are representable in good. That is, for any morphism Y ′ → Y from an object of dAfnd,
the pullback f ′ : X ′ → Y ′ is a morphism between objects of dAfnd which belongs to the
class good.

Therefore, by [Man22, Proposition A.5.16] again, the six-functor formalism of (3.139)
extends to a six-functor formalism

Strat : Corr(dRig, Estr)→ CAlg(PrLst), (3.140)

uniquely such that
Strat∗(X)

∼−→ lim
Y ∈dAfndop

/X

Strat∗(Y ), (3.141)

for all X ∈ dRig. In particular QCoh∗ is the left Kan extension of its restriction to dAfnd.
One could further iterate the extension principles of [Man22, §A.5], although we do not
do this here for the reason stated above. Let f : X → Y be a morphism in dRig. We will
denote the six operations of the six-functor formalism Strat by

(f∗str, fstr,∗, fstr,!, f
!
str,“⊗Xstr

,HomXstr
), (3.142)

where, of course, the functors fstr,! and f !str are only defined when f ∈ Estr.
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3.2.3 Descent and Kashiwara’s equivalence

Let f : X → Y be any morphism in dAfnd. The equivalence

QCoh((X/Y )str)
∼−→ lim

[n]∈∆
QCoh∗((X ⊆ Xn+1/Y )†) (3.143)

follows automatically from the fact that QCoh∗ is a limit-preserving functor on PStkop.
Using this equivalence, it is quite easy to show the following.

Lemma 3.2.17. Let X ∈ dAfnd. Let {Ui → X}ni=1 be a finite cover of X by affinoid
subspaces.

(i) Let I be the family of finite nonempty subsets of {1, . . . , n} and for each I ∈ I set
UI :=

⋂
i∈I Ui. Then, the canonical morphism

Strat∗(X)→ lim
I∈I

Strat∗(UI) (3.144)

is an equivalence.

(ii) Set Y :=
∐n
i=1 Ui → X. Then, the canonical morphism

Strat∗(X)→ lim
[m]∈∆

Strat∗(Y m+1/X) (3.145)

is an equivalence.

Proof. (i): Let tI : UI → X be the inclusions. By using the presentation

Strat(X)
∼−→ lim

[m]∈∆
QCoh∗((X ⊆ Xn+1)†), (3.146)

it is sufficient to show that, for each m ⩾ 0, the canonical morphism

QCoh∗((X ⊆ Xm+1)†)→ lim
I∈I

QCoh∗((UI ⊆ Um+1
I )†) (3.147)

is an equivalence. However, this follows from Lemma 3.1.68(i), since the diagonally em-
bedded copy of |X| in Xm+1 is contained in

⋃n
i=1 U

×m+1
i .

(ii): This is quite similar to the proof of (i), using Lemma 3.1.68(ii) instead of Lemma
3.1.68(i).

Corollary 3.2.18. The prestack Strat∗ : dRig → CAlg(PrLst) is a sheaf in the analytic
topology.

Proof. Since Strat∗ is right Kan extended from dAfndop, the combination of Lemma 3.2.17
and [Man22, Proposition A.3.11] gives the Corollary.

Let X ∈ dRig and let S ⊆ |X| be a closed subset of the underlying topological space.
Let j : U → X be the inclusion of the open analytic subspace corresponding to to
complement of S. We define

ΓS Strat(X) ⊆ Strat(X) (3.148)

to be the full subcategory spanned by objects M such that j∗strM ≃ 0.
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Proposition 3.2.19. Let i : Z → X be a Zariski-closed immersion in dAfnd which is
induced by a morphism of algebras which is surjective on π0. Assume that i admits a
retraction r : X → Z. Then:

(i) There is a canonical equivalence

(Z ⊆ X)† ≃ Zstr ×Xstr
X. (3.149)

in PStk.

(ii) In the Cartesian square

(Z ⊆ X)† X

Zstr Xstr

ι

q
⌟

p

istr

(3.150)

coming from (i), the Beck-Chevalley morphism

p∗istr,∗ → ι∗q
∗ (3.151)

is an equivalence of functors from Strat(Z) = QCoh(Zstr) to QCoh(X).

(iii) The pair (i∗str, istr,∗) induces an equivalence Strat(Z) ≃ Γ|Z| Strat(X).

Proof. (i): In order to calculate X×Xstr
Zstr, we use décalage, c.f. Lemma 3.2.7. We note

that (Dec0 Inf(X))×Inf(X) Inf(Z) is given by the simplicial object (Z ⊆ X×Z•+1)†, where
Z is embedded via the morphism (i,∆n+1) : Z → X×Z×n+1. We recognise this simplicial
object as the Čech nerve of (X ⊆ X ×Z)† → (Z ⊆ X)†. This is a split epimorphism: the
splitting is induced by (id, r) : X → X × Z. Therefore, we conclude that the augmented
simplicial object (Z ⊆ X × Z•+1)† → (Z ⊆ X)† is split, as it is the nerve of a split
epimorphism. By Lemma 3.2.7, this proves that (Z ⊆ X)† ≃ Zstr ×Xstr

X.
(ii): The functor QCoh∗, by its construction, satisfies descent along X → Xstr. By (i),

the pullback of each covering map Xn+1/Xstr ≃ (X ⊆ Xn+1)† → Xstr along Zstr → Xstr

is given by ιn : (Z ⊆ Xn+1)† → (X ⊆ Xn+1)†. Each pushforward ιn,∗ is compatible with
base-change and therefore, for each Cartesian section

(Mn)n∈∆ ∈ lim
[n]∈∆

QCoh((Z ⊆ Xn+1)†) ≃ QCoh(Zstr) (3.152)

then
(ιn,∗Mn)n∈∆ ∈ lim

[n]∈∆
QCoh((X ⊆ Xn+1)†) ≃ QCoh(Xstr) (3.153)

is also a Cartesian section. By the equivalence of categories implicit in descent, this implies
that p∗istr,∗ ≃ ι∗q∗.

(iii): Let j : U → X be the inclusion of the analytic subspace corresponding to
|X| \ |Z| ⊆ |X|. Consider the following diagram in PStk, in which both squares are
Cartesian (for the left square this is (i) and for the right square this is Example 3.2.10):

(Z ⊆ X)† X U

Zstr Xstr Ustr

ι

q
⌟

p

j

⌟

r

istr jstr

(3.154)
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We make two claims: (a) that the counit morphism i∗stristr,∗ → id is an equivalence, and
(b) that j∗strM ≃ 0 if and only if the unit morphism M → istr,∗i

∗
strM is an equivalence.

We note that each of the functors q∗, p∗, r∗ is conservative (each of the morphisms
p, q, r is of ∗-descent, because they are effective epimorphisms). In particular, it suffices
to check that (a) is an equivalence after applying q∗. By commutativity of (3.154), and
the base-change of part (ii), one has q∗i∗stristr,∗ ≃ ι∗ι∗q∗, and ι∗ι∗ → id is an equivalence,
because (Z ⊆ X)† → X is a homotopy monomorphism.

For (b), we have the following chain of equivalences, for M ∈ QCoh(Xstr):

j∗strM ≃ 0 ⇐⇒ r∗j∗strM ≃ 0 by conservativity of r∗

⇐⇒ j∗p∗M ≃ 0 by commutativity of (3.154)

⇐⇒ ι∗ι
∗p∗M

∼−→ p∗M by Corollary 3.1.65

⇐⇒ p∗istr,∗i
∗
strM

∼−→ p∗M by part (ii) and commutativity of (3.154)

⇐⇒ istr,∗i
∗
strM

∼−→M by conservativity of p∗.

It then follows from the claims (a) and (b) that (i∗str, istr,∗) induces an equivalence Strat(Z) ≃
Γ|Z| Strat(X). Indeed, for inclusions of coreflective subcategories, the essential image of
the fully-faithful right adjoint is precisely those objects for which the unit morphism is an
equivalence.

Lemma 3.2.20. Let X ∈ dRig with S ⊆ |X| a closed subset of the underlying topological
space. Let open subsets {Ui}i∈I of |X| be given such that S ⊆

⋃
i∈I Ui. Let I be the

family of finite nonempty subsets of I . Then, the natural morphism

ΓS Strat(X)→ lim
I∈I

ΓSI
Strat(UI) (3.155)

induced by the collection of upper-star functors, is an equivalence.

Proof. This follows quite straightforwardly from the fact that Strat∗ is a sheaf in the
analytic topology, c.f. Lemma 3.2.17.

Definition 3.2.21. Let X ∈ dRig. A Zariski-closed immersion Z → X is called strati-
fying if it locally admits a retraction. That is, there exists affinoid subspaces {Ui}i∈I of
X such that |Z| ⊆

⋃
i∈I Ui, and for all i ∈ I , the morphism Z ×X Ui → Ui admits a

retraction.

Remark 3.2.22. (i) I chose the name stratifying because a similar kind of closed im-
mersions appears in the definition of the stratifying site in algebraic geometry [Gro68,
§4.2].

(ii) In analytic geometry, it seems quite plausible that a “Kashiwara’s equivalence” could
hold for a much larger class of immersions than just Zariski-closed immersions.

(iii) If i : Z → X is a closed immersion between smooth classical affinoid rigid spaces,
then i is stratifying. This follows from a result of Kiehl [Kie67, Theorem 1.19], see
also [BLR95, Proposition 2.11].

Theorem 3.2.23 (Kashiwara’s equivalence). Let i : Z → X be a stratifying Zariski-closed
immersion in dRig. Then, the pair (i∗str, istr,∗) induces an equivalence

Strat(Z) ≃ Γ|Z| Strat(X). (3.156)
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Proof. We proceed in steps.
Step 1 : If X ∈ dRig is an affinoid and i : Z → X admits a retraction, this follows from

Proposition 3.2.19.
Step 2 : Now suppose that X is an analytic subspace of an affinoid space X ′ and

i : Z → X is a Zariski-closed immersion which admits a retraction. Choose a covering
{Ui → X}i∈I of X by affinoid subspaces of X ′. Let I be the family of finite nonempty
subsets of I and for each I ∈ I set UI :=

⋃
i∈I Ui. Each UI is an affinoid and each

ZI := Z ×X UI → UI admits a retraction. We have a commutative square

Γ|Z| Strat(X) lim
I∈I

Γ|ZI | Strat(UI)

Strat(Z) lim
I∈I

Strat(ZI)

(3.157)

in which the horizontal arrows are equivalences by Lemma 3.2.17 and Lemma 3.2.20, and
the right vertical arrow is an equivalence by Step 1. Therefore, the left vertical arrow is
an equivalence.

Step 3 : Now X is arbitrary. Choose affinoid subspaces {Ui}i∈I of X such that |Z| ⊆⋃
i∈I Ui and each ZI := Z ×X Ui → UI admits a retraction. Each UI is an analytic

subspace of an affinoid space, and each ZI → UI admits a retraction. Therefore, we may
argue as in Step 2, using the result of Step 2, to conclude the proof.

3.2.4 The monad of differential operators and the comonad of jets

Definition 3.2.24. Let f : X → Y be a morphism in dAfnd and let pX/Y : X → (X/Y )str
be the canonical morphism.

(i) We define the comonad of jets of f to be the comonad

J∞
X/Y := p∗X/Y pX/Y,∗ (3.158)

acting on QCoh(X). We abbreviate J∞
X/∗ to J∞

X .

(ii) We define the monad of differential operators of f to be the monad

D∞
X/Y := p!X/Y pX/Y,! (3.159)

acting on QCoh(X). We abbreviate D∞
X/∗ to D∞

X .

Lemma 3.2.25. Let f : X → Y be a morphism in dAfnd. Let pX/Y : X → (X/Y )str be

the canonical morphism. Then, there is a canonical equivalence pX/Y,!
∼−→ pX/Y,∗.

Proof. This is an immediate consequence of Lemma 3.2.12, because the morphism pX/Y is
even representable in PStk, and all such morphisms satisfy pX/Y,! ≃ pX/Y,∗, c.f. Theorem
3.1.69.

Remark 3.2.26. (i) Let f : X = dSp(A) → dSp(B) = Y be a morphism between
affinoids. Due to Lemma 3.2.25 and base-change, the underlying endofunctors of
J∞
X/Y and D∞

X/Y can be described as

J∞
X/Y ≃ π̃1,∗π̃

∗
2 ≃ (A“⊗L

BA)†∆ ⊗
L
A −

D∞
X/Y ≃ π̃2,!π̃

!
1 ≃ RHomA((A“⊗L

BA)†∆,−).
(3.160)

Here π̃1, π̃2 : (X ⊆ X ×Y X)† → X are the two projections.
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(ii) As a formal consequence of Lemma 3.2.25, we see that the monad D∞
X/Y is right

adjoint to the comonad J∞
X/Y . In particular, their Kleisli categories are equivalent.

Morphisms in either Kleisli category can be interpreted as infinite-order differential
operators.

Lemma 3.2.27. Let f : X → Y be a morphism in dAfnd and let pX/Y : X → (X/Y )str
be the canonical morphism.

(i) The adjunction p∗X/Y ⊣ pX/Y,∗ is comonadic. That is, the comparison functor in-
duced by p∗X/Y gives an equivalence of categories

QCoh((X/Y )str) ≃ ComodJ∞
X/Y

QCoh(X). (3.161)

(ii) Assume that X → (X/Y )str is of !-descent. Then the adjunction pX/Y,! ⊣ p!X/Y is

monadic. That is, the comparison functor induced by p!X/Y gives an equivalence of
categories

QCoh((X/Y )str) ≃ ModD∞
X/Y

QCoh(X). (3.162)

(iii) In the situation of (ii), the implicit equivalence of categories

ModD∞
X/Y

QCoh(X) ≃ ComodJ∞
X/Y

QCoh(X) (3.163)

can be described as follows: The functor from left to right is given as

colim
[n]∈∆op

J∞
X/Y (D∞

X/Y )n, (3.164)

and the functor from right to left is given as

lim
[n]∈∆

D∞
X/Y (J∞

X/Y )n. (3.165)

Proof. (i): The functor QCoh∗ satifies descent along X → (X/Y )str. Therefore, the claim
follows from Lemma 2.3.6(i).

(ii): This follows from Lemma 2.3.6(ii).
(iii): By using the explicit equivalence of categories implicit in the Barr-Beck-Lurie

theorem, c.f. Lemma 2.2.4, we see that the functor from left to right is given by

p∗X/Y colim
[n]∈∆op

pX/Y,!(p
!
X/Y pX/Y,!)

n ≃ colim
[n]∈∆op

J∞
X/Y (D∞

X/Y )n, (3.166)

where we used that p∗X/Y commutes with colimits, and that pX/Y,! ≃ pX/Y,∗, by Lemma
3.2.25. Similarly, we see that the functor from right to left is given by

p!X/Y lim
[n]∈∆

pX/Y,∗(p∗X/Y pX/Y,∗)n ≃ lim
[n]∈∆

D∞
X/Y (J∞

X/Y )n, (3.167)

where we used that p!X/Y commutes with limits and that pX/Y,! ≃ pX/Y,∗ again.

Under certain circumstances20, we can use Lemma 3.2.27 to give formulas for the
six-operations, in terms of modules over the monad D∞

X or comodules over the comonad
J∞
X .

20That is, the functors appear to exist in greater generality than the nice formulas for them do.
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Theorem 3.2.28 (Formulas for the six operations). (I) Let f : X → Y be any mor-
phism in dAfnd. Let M ∈ ComodJ∞

X
QCoh(Y ). The upper-star pullback

f∗M (3.168)

is naturally an object of ComodJ∞
X

QCoh(X). Under the equivalence of categories
(3.161), this operation is identified with f∗str : Strat(Y )→ Strat(X).

(II) Let f : X → Y be any morphism in dAfnd such that Y → Ystr is of !-descent, and
let M ∈ ComodJ∞

X
QCoh(X). Then, the object

lim
[n]∈∆

D∞
Y f∗(J∞

X )nM (3.169)

is naturally an object of ModD∞
X

QCoh(X). Under the equivalences of categories
(3.161) and (3.162), this operation is identified with fstr,∗ : Strat(X)→ Strat(Y ).

(III) Let f : X → Y be any morphism between objects of dAfnd which belongs to the
class of good morphisms. Assume that X → Xstr is of !-descent, and let M ∈
ModD∞

X
QCoh(X). Then, the object

colim
[n]∈∆op

J∞
Y f!(D∞

X )nM (3.170)

is naturally an object of ComodJ∞
Y

QCoh(Y ). Under the equivalences of categories
(3.162) and (3.161), this operation is identified with fstr,! : Strat(X)→ Strat(Y ).

(IV) Let f : X → Y be any morphism between objects of dAfnd which belongs to the class
of good morphisms. Assume that X → Xstr and Y → Ystr are of !-descent and let
M ∈ ModD∞

Y
QCoh(Y ). The upper-shriek pullback

f !M (3.171)

is naturally an object of ModD∞
X

QCoh(X). Under the equivalence of categories

(3.162), this operation is identified with f !str : Strat(Y )→ Strat(X).

(V) Let X ∈ dAfnd and let M,N ∈ ComodJ∞
X

QCoh(X). The tensor product

M“⊗XN (3.172)

is naturally an object of ComodJ∞
X

QCoh(X). Under the equivalence of categories

(3.161), this operation is identified with the tensor product “⊗Xstr
on Strat(X).

(VI) Let X ∈ dAfnd and assume that X → Xstr is of !-descent. LetM,N ∈ ModD∞
X

QCoh(X).
Then, the object

lim
[n]∈∆

D∞
X HomX((D∞

X )nM,N) (3.173)

is naturally an object of ModD∞
X

QCoh(X). Under the equivalence of categories
(3.162), this operation is identified with the internal Hom bifunctor on Strat(X).

Proof. All of these statements will be proven using Lemma 2.2.4 and the commutative
(but not Cartesian) square

X Y

Xstr Ystr

f

pX pY

fstr

(3.174)
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in PStk. We will also freely use the equivalences (3.161) and (3.162), as well as the
equivalences pX,! ≃ pX,∗ and pY,! ≃ pY,∗ coming from Lemma 3.2.25.

(I): By using Lemma 2.2.4 and Lemma 3.2.27 we know that the required functor from
ComodJ∞

Y
QCoh(Y ) to ComodJ∞

X
QCoh(X) is given by the formula

p∗Xf
∗
str lim

[n]∈∆
pY,∗(p∗Y pY,∗)n (3.175)

By using commutativity of the square (3.174) and Lemma 2.2.4, we have

p∗Xf
∗
str lim

[n]∈∆
pY,∗(p∗Y pY,∗)n ≃ f∗p∗Y lim

[n]∈∆
pY,∗(p∗Y pY,∗)n ≃ f∗. (3.176)

(II): By using Lemma 2.2.4 and Lemma 3.2.27, we know that the required functor
from ComodJ∞

X
QCoh(X) to ModD∞

Y
QCoh(Y ) is given by the formula

p!Y fstr,∗ lim
[n]∈∆

pX,∗(p∗XpX,∗)n. (3.177)

Using that p!Y and fstr,∗ commute with limits, the commutativity of the diagram (3.174),
and Lemma 3.2.25 we have

p!Y fstr,∗ lim
[n]∈∆

pX,∗(p∗XpX,∗)n ≃ lim
[n]∈∆

p!Y fstr,∗pX,∗(p∗XpX,∗)n

≃ lim
[n]∈∆

p!Y pY,∗f∗(p∗XpX,∗)n

≃ lim
[n]∈∆

D∞
Y f∗(J∞

X )n.

(3.178)

(III): By using By using Lemma 2.2.4 and Lemma 3.2.27, we know that the required
functor from ModD∞

X
QCoh(X) to ComodJ∞

Y
QCoh(Y ) is given by the formula

p∗Y fstr,! colim
[n]∈∆op

pX,!(p
!
XpX,!)

n (3.179)

Using that p∗Y and fstr,! commute with colimits, the commutativity of the diagram (3.174),
and Lemma 3.2.25 we have

p∗Y fstr,! colim
[n]∈∆op

pX,!(p
!
XpX,!)

n ≃ colim
[n]∈∆op

p∗Y fstr,!pX,!(p
!
XpX,!)

n

≃ colim
[n]∈∆op

p∗Y pY,!f!(p
!
XpX,!)

n

≃ colim
[n]∈∆op

J∞
Y f!(D∞

X )n.

(3.180)

(IV): By using Lemma 2.2.4 and Lemma 3.2.27 we know that the required functor from
ModD∞

Y
QCoh(Y ) to ModD∞

X
QCoh(X) is given by the formula

p!Xf
!
str colim

[n]∈∆op
pY,!(p

!
Y pY,!)

n. (3.181)

By using the commutativity of the square (3.174) and Lemma 2.2.4, we have

p!Xf
!
str colim

[n]∈∆op
pY,!(p

!
Y pY,!)

n ≃ f !p!Y colim
[n]∈∆op

pY,!(p
!
Y pY,!)

n ≃ f !. (3.182)
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(V): Let M,N ∈ ComodJ∞
X

QCoh(X). By transport of structure using Lemma 2.2.4
and Lemma 3.2.27, the tensor product on Strat(X) translates to the bifunctor sending
M,N to

p∗X

((
lim

[n]∈∆
pX,∗(p!XpX,∗)nM

)“⊗Xstr

(
lim

[m]∈∆
pX,∗(p!XpX,∗)mN

))
. (3.183)

Using that p∗X is symmetric-monoidal, and Lemma 2.2.4, we have equivalences

p∗X

((
lim

[n]∈∆
pX,∗(p!XpX,∗)nM

)“⊗Xstr

(
lim

[m]∈∆
pX,∗(p!XpX,∗)mN

))
≃

(
p∗X lim

[n]∈∆
pX,∗(p!XpX,∗)nM

)“⊗X(
p∗X lim

[m]∈∆
pX,∗(p!XpX,∗)mN

)
≃M“⊗XN. (3.184)

(VI): Let M,N ∈ ModD∞
X

QCoh(X). By transport of structure using Lemma 2.2.4
and Lemma 3.2.27, the internal Hom bifunctor on Strat(X) translates to the bifunctor
sending M,N to

p!XHomXstr

(
colim
[n]∈∆op

pX,∗(p!XpX,∗)nM, colim
[m]∈∆op

pX,∗(p!XpX,∗)mN
)
. (3.185)

We have the following chain of equivalences:

p!XHomXstr

(
colim
[n]∈∆op

pX,∗(p!XpX,∗)nM, colim
[m]∈∆op

pX,∗(p!XpX,∗)mN
)

≃ p!X lim
[n]∈∆

HomXstr

(
pX,∗(p!XpX,∗)nM, colim

[m]∈∆op
pX,∗(p!XpX,∗)mN

)
≃ p!X lim

[n]∈∆
pX,∗HomXstr

(pX,∗(p!XpX,∗)nM,p!X colim
[m]∈∆op

pX,∗(p!XpX,∗)mN)

≃ p!X lim
[n]∈∆

pX,∗HomXstr
(pX,∗(p!XpX,∗)nM,N)

≃ lim
[n]∈∆

p!XpX,∗HomXstr
(pX,∗(p!XpX,∗)nM,N)

≃ lim
[n]∈∆

D∞
X HomX((D∞

X )nM,N),

(3.186)

where, in the third line we used the formula (2.90), in the fourth line we used Lemma
2.2.4, and in the fifth line we used that p!X commutes with limits.

3.2.5 The germ of the zero-section in TX

Proposition 3.2.29. Let X = Sp(A) be a classical affinoid rigid space equipped with an
étale morphism X → Dr

K . Then the algebra morphism

colim
m

A“⊗K⟨dx/pm⟩ → colim
U⊃∆X

(A“⊗KA)U , (3.187)

determined by a ⊗ 1 7→ a ⊗ 1 and dxi 7→ 1 ⊗ xi − xi ⊗ 1, is an isomorphism of complete
bornological K-algebras. Here colimit on the left runs through the system of affinoid open
neighbourhoods U ⊃ ∆X and (−)U denotes the corresponding affinoid localization.

Proof. Let21 us denote the canonical morphism by

φ : colim
m

A“⊗K⟨dx/pm⟩ → colim
U⊃∆X

(A“⊗KA)U , (3.188)

21I would like to thank Finn Wiersig for a helpful discussion about the proof of this Proposition.
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in other words, for each f =
∑
α∈Nr fα ⊗ (dx)α, one has

φ(f) =
∑
α∈Nr

(fα ⊗ 1)(1⊗ xi − xi ⊗ 1)α. (3.189)

It is not so hard to show that φ is bounded. In order to prove the Proposition we will
construct a bounded inverse ψ to φ. Let us temporarily write xi := xi⊗1 and yi := 1⊗xi.
Let ∂xi

, (resp. ∂yi), be the derivations on A“⊗KA with ∂xi
(xj) = δij = ∂yi(yj) and

∂xi
(yj) = 0 = ∂yi(xj) for all i, j. The multiplication map µ : A“⊗KA → A induces a

morphism µ : colimU⊃∆X(A“⊗KA)U → A. Given g ∈ colimU⊃∆X(A“⊗KA)U we set

ψ(g) :=
∑
α∈Nr

1

α!
µ(∂αy g)⊗ (dx)α. (3.190)

Now we will proceed in steps.
Step 1: The morphism ψ is well-defined and bounded. With notations as above, fix

an open affinoid U ⊇ ∆X. The derivations ∂yi restrict to well-defined bounded operators
from (A ⊗K A)U to itself. In particular, there exists constants Ci such that ∥∂yig∥U ⩽
Ci∥g∥U for all g ∈ (A ⊗K A)U ; here ∥ · ∥U denotes the residue norm on (A“⊗KA)U . By
the well-known fact that |1/α!| ⩽ cα for some c > 0, and by boundedness of µ, we deduce
that there exists constants M and K > 0 such that

∥∥ 1
α!µ(∂αy )g∥ ⩽ MKα∥g∥U ; here ∥ · ∥

denotes the residue norm on A. Hence if |pN | < K−1 then ψ restricts to a bounded map
(A⊗K A)U → A“⊗KK⟨dxi/pN ⟩i. This shows that ψ is well-defined and the restriction of
ψ to (A“⊗KA)U is bounded. Since U was arbitrary, ψ is bounded.

Step 2: The composite ψ ◦ φ = id. We note that the derivations ∂yi are bounded and
A-linear, for the first copy of A. Hence, if g = φ(f) =

∑
α∈Nr (fα ⊗ 1)(y − x)α, then

1
α!µ(∂αy g) = fα so that ψ ◦ φ = id.

Step 3: ψ is injective. We first note that we can replace the system of all affinoid neigh-
bourhoods {U ⊇ ∆X} of ∆X in X ×X, with the system of all affinoid neighbourhoods
U ′ of ∆X with the following property: each connected component of ∆X is contained in
a unique connected component of U ′. We now consider the system of algebras defining
the colimit

colim
U ′⊇∆X

(A“⊗KA)U ′ , (3.191)

where U ′ runs over the affinoid neighbourhoods as above. Recalling that X is smooth,
one has in particular that each (A“⊗KA)U ′ is normal. Therefore, it is a product (indexed
by the connected components of U ′) of integral domains. It is also Noetherian. Also, by
normality, all the transition morphisms in the system (3.191) are injective. We may use
these facts implictly in the following.

Let I ⊆ A“⊗KA be the ideal defining the diagonal. Then Krull’s intersection theorem
for Noetherian integral domains (applied separately in each connected component of U ′)
implies that the canonical morphism

(A“⊗KA)U ′ → lim
k

(A“⊗KA)U ′/Ik ∼= lim
k

(A“⊗KA)/Ik (3.192)

is injective. Since the transition morphisms in the system (3.191) are injective we obtain
a canonical injective morphism

colim
U ′⊇∆X

(A“⊗KA)U ′ ↪→ lim
k

(A“⊗KA)/Ik. (3.193)
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By flatness of A with respect to “⊗K , we see that the morphisms in the system

{A“⊗KK⟨dx/pm⟩}m⩾0. (3.194)

are injective. Applying Krull’s intersection theorem in a similar manner to above, we
obtain a canonical injective morphism

colim
k

A“⊗KK⟨dx/pm⟩ ↪→ lim
k

(A⊗K[dx])/(dx)k. (3.195)

These morphisms fit into a commutative square:

colim
U ′⊇∆X

(A“⊗KA) colim
m

(A“⊗KK⟨dx/pm⟩)
lim
k

(A“⊗KA)/Ik lim
k
A“⊗KK[dx]/(dx)k

ψ

(3.196)

We claim that
lim
k
φk : lim

k
A“⊗KK[dx]/(dx)k → lim

k
(A“⊗KA)/Ik (3.197)

is an isomorphism, where φk : A“⊗KK[dx]/(dx)k → (A“⊗KA)/Ik is induced by φ. That
will be enough to prove Step 3 because the bottom arrow in (3.196) is inverse to this
morphism.

Because X is smooth, the immersion ∆ : X → X × X is regular. We recall also
that Ω1

X/K
∼= I/I2 by sending dxi 7→ yi − xi. Therefore, we obtain for each k ⩾ 0 an

isomorphism Symk(Ω1
X/K) → Ik/Ik+1 sending (dx)α 7→ (y − x)α. By passing to the

graded, this implies that each φk is an isomorphism.
Step 4: Completing the proof. By Step 2, ψ is strict epimorphism of complete bornolog-

ical spaces. It is also injective by Step 3. Therefore, ψ is an isomorphism.

Motivated by this result we define another groupoid object as follows. In the “alge-
braic” setting, I found that reading [CVdB10, §4] was very useful. This discussion is also
quite similar to [Cam24, Example 6.1.8]. Let X be a classical affinoid rigid space equipped
with an étale morphism X → Dr

K . Then we can consider the germ of the zero section as
an object of dAff:

(X ⊆ TX)† = dSp(A“⊗KK⟨dx/p∞⟩). (3.198)

There is a augmentation ε : A“⊗KK⟨dx/p∞⟩ → A and two algebra morphisms σ, τ : A→
A“⊗KK⟨dx/p∞⟩. One has

σ := id⊗1 : A→ A“⊗KK⟨dx/p∞⟩, (3.199)

which gives the left A-module structure on A“⊗KK⟨dx/p∞⟩. The algebra morphism τ
sends a function to its Taylor series:

τ(a) :=
∑
α∈Nr

1

α!
∂α(a)⊗ (dx)α. (3.200)

This gives the right A-module structure on A“⊗KK⟨dx/p∞⟩. There is an algebra morphism

ψ : A“⊗K⟨dx/p∞⟩ → (A“⊗KK⟨dx/p∞⟩)“⊗A(A“⊗KK⟨dx/p∞⟩) (3.201)
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determined by ψ(a⊗ 1) = (a⊗ 1)⊗ (1⊗ 1) and

ψ(1⊗ dxi) = (1⊗ dxi)⊗ (1⊗ 1) + (1⊗ 1)⊗ (1⊗ dxi). (3.202)

It is important to remember that the tensor product (3.201) is taken with respect to the
right A-module structure (via τ) on the first factor, and the left A-module structure on
the second factor. Using the morphisms ε, σ, τ, ψ we obtain a groupoid object

· · · (X ⊆ TX)† ×X (X ⊆ TX)† (X ⊆ TX)† X (3.203)

where we suppressed the degeneracy maps and we emphasise that the fiber product is
taken with respect to σ and τ . Let us call this groupoid object exp(TX). Now Proposition
3.2.29 can be rephrased in the following way.

Theorem 3.2.30. With notations as above. There is an equivalence

exp(TX) ≃ Inf(X) (3.204)

of simplicial objects in dAff.

Remark 3.2.31. Using the isomorphism of Proposition 3.2.29 the morphisms ϵ, σ, τ and
ψ may be described in the following (and more symmetric) way: ϵ is induced by the
multiplication A“⊗KA→ A, σ, τ are induced by id⊗1 and 1⊗id : A→ A“⊗KA, respectively,
and ψ is induced by the morphism A“⊗KA→ (A“⊗KA)“⊗A(A“⊗KA) which sends a⊗ a′ 7→
(a⊗1)⊗(1⊗a′). We see that this is really the same as [GD67, §16.8], but we just replaced
the formal neighbourhood of the diagonal with the germ of the diagonal.

Continuing in the above setup, let derivations ∂i be dual to dxi. We recall that
Ardakov–Wadsley’s ring ÙDX(X) can be explicitly written as “rapidly decreasing series in
the variable ∂”: ÙDX(X) =

{ ∑
α∈Nr

fα∂
α : ∥fα∥rα

α→∞−−−−→ 0 for all r > 0

}
, (3.205)

with the expected multiplication for differential operators. For the sake of brevity let us
write J := A“⊗KK⟨dx/p∞⟩ and U := ÙDX(X). We may identify J with the left A-linear
(bornological) dual of U via the pairing (∂β , (dx)α) := α!δαβ . Using this identification
one may define two22 commuting actions of T := TX(X) on J by derivations:

1∇θ(j)(D) := θ(j(D))− j(θD), 2∇θ(j)(D) := j(Dθ). (3.206)

for j ∈ J,D ∈ U, θ ∈ T . Using the action 1∇ of T by derivations we obtain the de Rham
complex of J which is augmented via τ : A→ J :

A→ Ω•
A/K

“⊗A,σJ. (3.207)

22The action 2∇ is not used in this thesis. I only mention it to emphasise that J has lots of extra
structure. The actions 1∇, 2∇ can be explained in the following way. We regard J as the left A-linear

dual of U := ÙDX(X):
J = HomA(U,A).

Now U is of course a U -U -bimodule. We can view 2∇ as the näıve action by derivations on J which comes
from the right U -module structure on U . On the other hand, 1∇ is the action by derivations on J which
comes from the left U -module structures on U and A and Oda’s rule [HTT08, Proposition 1.2.9(iii)].
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Proposition 3.2.32. The augmented de Rham complex (3.207) is strictly exact.

Proof. The exactness follows from the “algebraic” version of this statement (see for in-
stance [CVdB10, Proposition 4.2.4]), using that A ⊗K K[dx] → J is flat. The strictness
can then be obtained by applying an appropriate version of the closed-graph theorem
[Wae67, §2].

Remark 3.2.33. One may recognise the morphism J → Ω1
A/K

“⊗A,σJ in the complex

(3.207) as being given by Euler–Lagrange operators.

Now using this finite resolution we obtain the following.

Theorem 3.2.34. Let X = Sp(A) be a classical smooth affinoid rigid space equipped with
an étale morphism X → Dr

K . Let p : X → Xstr be the canonical morphism. Then:

(i) p∗1X ∈ QCoh(Xstr) = Strat(X) is descendable in the sense of Mathew [Mat16,
§3.3].

(ii) The morphism p : X → Xstr is of universal !-descent. In particular, there is an
equivalence of categories Strat(X) ≃ ModD∞

X
(QCoh(X)), where the latter is the

category of modules over the monad D∞
X .

Proof. Due to Theorem 3.2.30 we may consider X/ exp(TX) := colim[n]∈∆op exp(TX)n with
its canonical morphism q : X → X/ exp(TX) instead of p : X → Xstr.

(i): Since the morphism q : X → X/ exp(TX) is of universal ∗-descent (as it is an effec-
tive epimorphism), there is an equivalence QCoh(X/ exp(TX)) ≃ Comodq∗q∗(QCoh(X))
induced by q∗. Therefore, to show that 1X/ exp(T ) belongs to the thick subcategory gen-
erated by q∗1X , is the same as showing that 1X belongs to the thick subcategory of
Comodq∗q∗(QCoh(X)) generated by q∗q∗1X = J . By the Dold-Kan correspondence it is
sufficient to give a bounded finite-free resolution of 1X as a J-comodule23. But that is
exactly Proposition 3.2.32.

(ii): By Lemma 3.2.25, we know that q! ≃ q∗. By (i) above, q∗1X ∈ QCoh(X/ exp(TX))
is descendable. Therefore one may argue in an essentially identical way to [Sch22, Propo-
sition 6.19] to deduce that q is of universal !-descent.

3.2.6 Relation to work of Ardakov–Wadsley and Bode

Let X = dSp(A) ∈ dAfnd. We recall (c.f. Remark 3.2.26) that the underlying endofunctor
of D∞

X can be described in this situation as

D∞
X ≃ π̃2,∗π̃!

1 ≃ RHomA((A“⊗KA)†∆,−), (3.208)

where RHomA is taken with respect to the A-module structure on the first factor. It is

critically important to note that (A“⊗KA)†∆ is an A-A bimodule. We adopt the following
convention:

⋆ The left A-module structure on D∞
XM

• (for M• ∈ QCoh(X)) comes from the A-

module structure on the first factor of (A“⊗KA)†∆,

⋆ The right A-module structure on D∞
XM

• comes from the A-module structure on the

second factor of (A“⊗KA)†∆.

23Here the A-A bimodule object J is viewed as a coalgebra under convolution.
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As an endofunctor of QCoh(X), D∞
X (−) is viewed as an A-module via the right A-module

structure. However, there may be certain situations where we wish to use the left A-
module structure, which we will try to make clear.

The first step towards describing modules over the monad D∞
X as modules over a ring

is the following.

Lemma 3.2.35. Let A be a (derived) affinoid algebra and let X = dSp(A). Then the
object D∞

X 1X acquires the canonical structure of an algebra object in the ∞-category

A BModAD(CBornK) = QCoh(X ×X) (3.209)

of A-A bimodule objects under convolution. There is a canonical morphism of monads

(−)“⊗XD∞
X 1X → D∞

X (−). (3.210)

We emphasise that the tensor product is taken with respect to the right A-module structure
on D∞

X 1X . The A-module structure on the left side of (3.210) comes from the left A-
module structure on D∞

X 1X .

Proof. We note that the functor p! is right adjoint to p! which is QCoh(∗)-linear. There-
fore by Theorem 2.2.17, the functor p! and hence also D∞

X = p!p! acquires a canonical
lax QCoh(∗)-linear structure. Applying the functor κ of Corollary 2.2.22, then D∞

X 1X
acquires the structure of an algebra object in the category of A-A bimodule objects under
convolution. Further, the morphism (3.210) of monads is obtained from the counit of the
adjunction induced by Corollary 2.2.22 on algebra objects.

Remark 3.2.36. One can alternatively construct the algebra structure on D∞
X 1X via an

“adjoint” Fourier–Mukai transform. Namely, the usual Fourier–Mukai transform gives a
(strongly monoidal) functor

QCoh(X ×X)→ FunLQCoh(∗)(QCoh(X),QCoh(X)) (3.211)

By Theorem 2.2.17 there is a strongly monoidal functor

FunLQCoh(∗)(QCoh(X),QCoh(X))→ FunR,laxQCoh(∗)(QCoh(X),QCoh(X))op, (3.212)

obtained by passing to adjoints. By Corollary 2.2.22 there is an adjunction

QCoh(X ×X) ⇆ FunR,laxQCoh(∗)(QCoh(X),QCoh(X)), (3.213)

in which the left adjoint is strongly monoidal (for convolution), hence the right adjoint

is canonically lax monoidal. The object (A“⊗KA)†∆ ∈ QCoh(X ×X) is a coalgebra under
convolution. The image of this object under the composite of (3.211), (3.212) and the
right adjoint in (3.213) gives the object D∞

X 1X ∈ QCoh(X ×X) together with its algebra
object structure (with respect to convolution).

The main point of the rest of this section is to identify a class of objects such that the
natural transformation (3.210) restricts to an equivalence on such objects. Furthermore,
the class of such objects should be large enough to include the examples of interest, e.g.
the underlying A-modules of C-complexes [Bod21, §8], and be preserved by the monad
D∞
X . For this purpose we introduce the following definition.

Definition 3.2.37. Let A ∈ dAfnd and let X = dSp(A).
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(i) We define
Fr(X) ⊆ QCoh(X) (3.214)

to be the full sub-∞-category spanned by those objects M• whose underlying object
M• ∈ D(CBornK) is such that, for each j ∈ Z, Hj(M•) is a Fréchet space.

(ii) We define
sFr(X) ⊆ Fr(X) (3.215)

to be the full sub-∞-category spanned by those objects M• such that AU“⊗L

AM
• ∈

Fr(U) for every affinoid subdomain U ⊆ X. We may refer to such objects as stably
Fréchet complexes.

Before proceeding further we fix notations as in §3.2.5. If X = Sp(A) is a classical
affinoid rigid space equipped with an étale morphism X → Dr

K , we let x1, . . . , xr ∈ A be
the corresponding étale coordinates. For every 0 ⩽ m < ∞ and we define the K-linear
pairing

K⟨dx/pm⟩ ×K⟨pm∂⟩ → K (3.216)

by ((dx)α, ∂β) := α!δαβ , for every pair of multi-indices α, β ∈ Nr. We define K⟨dx/p∞⟩ :=
colimmK⟨dx/pm⟩ andK⟨p∞∂⟩ := limmK⟨pm∂⟩ where the (co)limits are taken in CBornK .

Lemma 3.2.38. If V ∈ CBornK is a Fréchet space, then the canonical morphism

V“⊗L

KK⟨p∞∂⟩ → RHomK(K⟨dx/p∞⟩, V ) (3.217)

is an equivalence in D(CBornK). Further, the natural morphism

V“⊗L

KK⟨p∞∂⟩ → V“⊗KK⟨p∞∂⟩ (3.218)

is an equivalence, so that both sides are concentrated in degree 0.

Proof. By Lemma 2.1.30 V can be presented as an ℵ1-filtered colimit

V ≃ colim
[B]∈S(V )

VB (3.219)

of Banach spaces. By Corollary 2.1.24 this is even the colimit in D(CBornK). Using this
together with the fact that we can exchange countable limits with ℵ1-filtered colimits (by
Proposition 2.1.49 and Lemma 2.1.42), we obtain

RHomK(K⟨dx/p∞⟩, V ) ≃ Rlim
n
Lcolim

[B]
HomK(K⟨dx/pn⟩, VB)

≃ Lcolim
[B]

Rlim
n

HomK(K⟨dx/pn⟩, VB).
(3.220)

Now cofinality together with the Mittag-Leffler result of [Bod21, Theorem 5.24] implies
that

Rlim
n

HomK(K⟨dx/pn⟩, VB) ≃ Rlim
n

(VB“⊗KK⟨pn∂⟩) ≃ lim
n

(VB“⊗KK⟨pn∂⟩). (3.221)

viewed as an object in degree 0. Next we note that

VB“⊗KK⟨p∞∂⟩ ∼= lim
n

(VB“⊗KK⟨pn∂⟩), (3.222)

in CBornK , because both sides can be written as rapidly decreasing series with coefficients
in the Banach space VB . Because K⟨p∞∂⟩ is strongly flat [Bod21, Corollary 5.36], we

obtain VB“⊗KK⟨p∞∂⟩ ≃ VB“⊗L

KK⟨p∞∂⟩. Hence we may conclude by using that “⊗L

K is
compatible with colimits (separately in each variable).
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Proposition 3.2.39. Let X = Sp(A) be a classical affinoid equipped with an étale mor-

phism X → Dr
K . There is an equivalence D∞

X 1X ≃ ÙDX(X) of algebra objects in QCoh(X).

Proof. Let q : X → X / exp(TX) be the canonical morphism. Thanks to Theorem 3.2.30
and the construction of Lemma 3.2.35 we know that there is an equivalence of algebra
objects24 D∞

X 1X ≃ q!q!1X . Now by base-change one has

q!q!1X ≃ RHomA(A“⊗KK⟨dx/p∞⟩, A) (3.223)

and using Lemma 3.2.38 above we know thatÙDX(X) ≃ A“⊗KK⟨p∞∂⟩ ≃ RHomA(A“⊗KK⟨dx/p∞⟩, A), (3.224)

as left A-modules, so we deduce that q!q!1X is (strongly) flat and concentrated in degree 0.
In particular it comes from an algebra object of the ordinary category A BModA CBornK .
We recall that the isomorphism (3.224) identifies each ∂α with the A-linear map deter-
mined by

∂α((dx)β) = α!δαβ . (3.225)

Now we use notations as in §3.2.5, in particular, we recall the definitions of the algebra
morphisms ε, σ, τ and ψ. We regard HomA(A“⊗KK⟨dx/p∞⟩, A) as a left A-module via
(a.η)(−) := η(σ(a) · −) and as a right A-module via (η.a)(−) := η(τ(a) · −), for a ∈ A
and η ∈ HomA(A“⊗KK⟨dx/p∞⟩, A). Under the identification (3.225), the right and left
actions become

a.∂α = a∂α and ∂α.a =
∑

β+γ=α

Ç
β

α

å
∂β(a)∂γ . (3.226)

We need to check that the composite

HomA(A“⊗KK⟨dx/p∞⟩, A)“⊗AHomA(A“⊗KK⟨dx/p∞⟩, A)

→ HomA((A“⊗KK⟨dx/p∞⟩)“⊗A(A“⊗KK⟨dx/p∞⟩), A)

ψ∨

−−→ HomA(A“⊗KK⟨dx/p∞⟩, A) (3.227)

agrees with the multiplication on ÙDX(X). In the first line, the tensor product is taken
with respect to the right A-module structure on the first factor and the left A-module
structure on the second factor. To be completely explicit, the first morphism sends η⊗ η′
to the morphism η‹⊗η′ determined by

(η‹⊗η′)(j ⊗ j′) := (η.η′(j′))(j) = η(τ(η′(j′))j), (3.228)

for j, j′ ∈ A“⊗KK⟨dx/p∞⟩. One checks that

∂α‹⊗∂β((1⊗ dx)γ ⊗ (1⊗ dx)ϵ) = α!β!δαγδβϵ. (3.229)

Let us denote the composite (3.227) by m. It follows from (3.229) that

m(∂α ⊗ ∂β)((1⊗ dx)γ) = (∂α‹⊗∂β)(ψ((1⊗ dx)γ))

= (∂α‹⊗∂β)
(Çγ

δ

å
(1⊗ dx)δ ⊗ (1⊗ dx)ϵ

)
= γ!δα+β,γ

= ∂α+β((1⊗ dx)γ),

(3.230)

24In the category of A-A bimodule objects with the convolution monoidal structure.
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so that m(∂α⊗∂β) = ∂α+β . Using this together with the fact that m is balanced and left
A-linear, one has

m(f∂α ⊗ g∂β) = m((f.∂α.g)⊗ ∂α)

= m
( ∑
η+ν=α

Ç
α

η

å
f∂η(g)∂ν ⊗ ∂β

)
=

∑
η+ν=α

Ç
α

η

å
f∂η(g)∂ν+β .

(3.231)

Therefore m(f∂α ⊗ g∂β) =
∑
η+ν=α

(
α
η

)
f∂η(g)∂ν+β agrees with the multiplication onÙDX(X), as required.

Theorem 3.2.40. Suppose that X = Sp(A) is a smooth classical affinoid equipped with
an étale morphism X → Dr

K . Let M• ∈ Fr(X). Then the canonical morphism

M•“⊗XD∞
X 1X → D∞

XM
• (3.232)

of Lemma 3.2.35, is an equivalence.

Proof. Using Theorem 3.2.30, what we need to show is that the canonical morphism

M•“⊗L

ARHomK(K⟨dx/p∞⟩, A)→ RHomK(K⟨dx/p∞⟩,M•) (3.233)

is an equivalence in D(CBornK). The right side of (3.233) is equivalent to

Rlim
n

HomK(K⟨dx/pn⟩,M•), (3.234)

and therefore by [Bod21, Lemma 3.3], for each j ∈ Z we obtain a short-exact sequence

0→ R1lim
n

HomK(K⟨dx/pn⟩, Hj−1(M•))

→ Hj(RHomK(K⟨dx/p∞⟩,M•))

→ lim
n

HomK(K⟨dx/pn⟩, Hj(M•))→ 0. (3.235)

Now by Lemma 3.2.38, the first term is zero and the second term is isomorphic to

Hj(M•)“⊗KK⟨p∞∂⟩ ∼= Hj(M•“⊗L

KK⟨p∞∂⟩), (3.236)

where we again used [Bod21, Corollary 5.36]. This shows that (3.233) is an isomorphism
after taking cohomology, and therefore an equivalence.

Proposition 3.2.41. Let X = Sp(A) be a smooth classical affinoid which admit an étale
morphism to a polydisk. Then the endofunctors D∞

X (−) and (−)“⊗XD∞
X 1X preserve the

full subcategories Fr(X) and sFr(X) of QCoh(X).

Proof. Let M• ∈ QCoh(X). After forgetting to D(CBornK), the object M•“⊗L

XD∞
X 1X is

nothing but

M•“⊗L

AA“⊗L

KK⟨p∞∂⟩ ≃M•“⊗L

KK⟨p∞∂⟩. (3.237)

where we used [Bod21, Corollary 5.36], and by the result of loc. cit. again one has

Hj(M•“⊗L

KK⟨p∞∂⟩) ∼= Hj(M•)“⊗KK⟨p∞∂⟩. This proves that (−)“⊗XD∞
X 1X preserves
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Fr(X). In order to show that (−)“⊗XD∞
X 1X preserves sFr(X) ⊆ Fr(X) it then suffices

to show that the natural morphism D∞
X 1X“⊗L

AAU → D∞
U 1U is an equivalence, for each

affinoid subdomain U ⊆ X. This can be deduced (for instance) from Proposition 3.2.39,

because ÙDX(X)
∼−→ ÙDU (U)“⊗L

AAU .

Corollary 3.2.42. Let X = Sp(A) be a smooth classical affinoid equipped with an étale
morphism X → Dr

K . The morphism (3.210) restricts to an equivalence of monads on
Fr(X). Consequently, there is an equivalence of ∞-categories

RModD∞
X 1X Fr(X) ≃ ModD∞

X
Fr(X). (3.238)

The same holds with sFr(X) in place of Fr(X).

Proof. Follows by assembling Theorem 3.2.40 and Proposition 3.2.41.

In the remainder of this subsection X = Sp(A) denotes a classical affinoid equipped
with an étale morphism X → Dr

K . We recall the definition of the Banach completed
differential operators DnX(X) from [Bod21, §2]. These are Noetherian Banach algebras

and ÙDX(X) = limnDnX(X) gives a presentation of ÙDX(X) as a Fréchet–Stein algebra.

Definition 3.2.43. An object M• ∈ RModÙDX(X)
D(CBornK) is called a C-complex if:

(i) each M•
n := M•“⊗LÙDX(X)DnX(X) is such that each Hj(M•

n) is a finitely-generated

DnX(X)-module and Hj(M•
n) = 0 for |j| ≫ 0;

(ii) the canonical morphism M• → R limnM
•
n is an equivalence.

We denote the full subcategory spanned by such objects, by DC(X).

Remark 3.2.44. By [Bod21, Lemma 8.11], condition (ii) in Definition 3.2.43 can be
replaced with the following (which may be easier to check in practice):

(ii)′ for each j ∈ Z the canonical morphism Hj(M•)→ limnH
j(M•

n) is an isomorphism.

Lemma 3.2.45. Suppose that M• is a C-complex. Then the underlying object M• ∈
QCoh(X) belongs to the full subcategory Fr(X) ⊆ QCoh(X), so that one has an inclusion

DC(X) ⊆ RModÙDX(X)
Fr(X). (3.239)

Proof. This is clear from Remark 3.2.44.

Assembling all the above together with Theorem 3.2.34 we may draw the following
diagram relating various categories.

Strat(X)

ModD∞
X

Fr(X) ModD∞
X

QCoh(X)

RModD∞
X 1X Fr(X) RModD∞

X 1X QCoh(X)

RModÙDX(X)
Fr(X) RModÙDX(X)

QCoh(X)

DC(X)

≃

≃

≃ ≃

(3.240)
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In particular we obtain the following.

Theorem 3.2.46. Let X = Sp(A) be a smooth classical affinoid equipped with an étale
morphism X → Dr

K . Then there is a fully-faithful functor of ∞-categories

DC(X) ↪→ Strat(X). (3.241)

3.2.7 Descent for ÙD-modules

In this section we continue to let X = Sp(A) be a smooth affinoid equipped with an
étale morphism X → Dr

K . Let Xw (resp. Xn,w) denote the poset of affinoid subdomains
(resp. pn-accessible subdomains25) of X. By using [Lur17, Proposition 4.6.2.17] and
unstraightening we obtain functors

RModÙDX(−)
D(CBornK) : Xop

w → Cat∞

RModDn
X(−)D(CBornK) : Xop

n,w → Cat∞
(3.242)

which send t : V ↪→ U to the pullback functors (−)“⊗LÙDX(U)
ÙDX(V ) and (−)“⊗L

Dn
X(U)DnX(V )

respectively. We recall that ÙDX (resp. DnX(X)) is a sheaf of algebras on Xw (resp. Xn,w).
More precisely, we recall that Ardakov and Wadsley have proved the counterpart of Tate
acyclicity for this Fréchet-Stein algebra.

Proposition 3.2.47. Let Xw (resp. Xn,w) be the poset of affinoid subdomains (resp.
pn-accessible subdomains) of X equipped with the weak G-topology. Then:

(i) [AW19, §8.1] Let {Ui → X}si=1 be a covering in Xw. Then the augmented (alter-

nating) Čech complex C•
aug({Ui}, ÙDX) is exact.

(ii) [AW19, Theorem 3.5] Let {Ui → X}si=1 be a covering in Xw,n.Then the augmented
(alternating) Čech complex C•

aug({Ui},DnX) is exact.

Remark 3.2.48. This immediately implies that C•
aug({Ui}, ÙDX) (resp. C•

aug({Ui},DnX))
is strictly exact: as it is a complex of Fréchet (resp. Banach) spaces, we can appeal to the
open mapping theorem.

Lemma 3.2.49. (i) Let U, V ⊆ X be affinoid subdomains. Then the canonical mor-
phism ÙDX(U)“⊗LÙDX(X)

ÙDX(V )→ ÙDX(U ∩ V ) (3.243)

is an equivalence of ÙDX(U)-ÙDX(V ) bimodule objects in D(CBornK).

(ii) Let U, V ⊆ X be pn-accessible affinoid subdomains. Then the canonical morphism

DnX(U)“⊗L

Dn
X(X)DnX(V )→ DnX(U ∩ V ) (3.244)

is an equivalence of DnX(U)-DnX(V ) bimodule objects in D(CBornK).

Proof. We only prove (i) as the proof of (ii) is very similar. Let AU , AV , AU∩V denote the

corresponding affinoid localizations. Using the isomorphism ÙDX(U) ≃ AU“⊗L

KK⟨p∞∂⟩,
25By this we mean pnTX -accessible, in the sense of [AW19, §4.5].
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and associativity properties of the (derived) tensor product, the morphism is equivalent
to the morphism

AU“⊗L

AAV“⊗L

KK⟨p∞∂⟩ → AU∩V“⊗L

KK⟨p∞∂⟩, (3.245)

which evidently comes from AU“⊗L

AAV → AU∩V by tensoring on the right. The latter is
an equivalence by [BBK17, Theorem 5.16].

Lemma 3.2.50. With notations as above. Let {Ui → X}si=1 be an admissible covering
of X by affinoid subdomains. Then:

(i) The morphism ÙDX(X) →
∏s
i=1

ÙDX(Ui) is descendable in the sense of Definition
2.2.8.

(ii) Let Y :=
∐s
i=1 Ui. Then the augmented simplicial object ÙDX(Y •+1/X) satisfies the

Beck-Chevalley condition of Definition 2.2.13.

(iii) The canonical morphism

RModÙDX(X)
D(CBornK)→ lim

[m]∈∆
RModÙDX(Ym+1/X)

D(CBornK) (3.246)

is an equivalence of ∞-categories. In particular RModÙDX(−)
D(CBornK) is a sheaf

on Xw.

Proof. (i): By combining Proposition 3.2.47 with Lemma 3.2.49, and using the Dold-Kan
correspondence, one deduces thatÙDX(X)→ R lim

( ∏
i
ÙDX(Ui)

∏
i<j

ÙDX(Ui)“⊗LÙDX(X)
ÙDX(Uj) · · ·

)
,

as ÙDX(X)-ÙDX(X) bimodule objects in D(CBornK). We note that the limit on the right
is finite because we used the alternating Čech complex. This establishes (i).

(ii): This is immediate from Lemma 3.2.49.
(iii): By using (i) and (ii) above, this follows from Lemma 2.2.14.

In an entirely similar way one has the following.

Lemma 3.2.51. With notations as above. Let {Ui → X}si=1 be an admissible covering
of X by pn-accessible affinoid subdomains. Then:

(i) The morphism DnX(X) →
∏s
i=1DnX(Ui) is descendable in the sense of Definition

2.2.8.

(ii) Let Y :=
∐s
i=1 Ui. Then the augmented simplicial object DnX(Y •+1/X) satisfies the

Beck-Chevalley condition of Definition 2.2.13.

(iii) The canonical morphism

RModDn
X(X)D(CBornK)→ lim

[m]∈∆
RModDn

X(Ym+1/X)D(CBornK) (3.247)

is an equivalence of ∞-categories. In particular RModDn
X(−)D(CBornK) is a sheaf

on Xn,w.

Proof. This is the same, mutandis mutatis, as the proof of Lemma 3.2.50.
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For each n ⩾ 0 we denote by

RModb,fg
Dn

X(X)D(CBornK) ⊆ RModDn
X(X)D(CBornK) (3.248)

the full subcategory spanned by (cohomologically) bounded complexes with finitely-generated
cohomology groups.

Lemma 3.2.52. Let U ⊆ X be a pn-accessible affinoid subdomain. Then:

(i) Finitely-generated right DnX(X)-modules are acyclic for (−)“⊗Dn
X(X)DnX(U).

(ii) The pullback functor (−)“⊗L

Dn
X(X)DnX(U) restricts to a functor

RModb,fg
Dn

X(X)D(CBornK)→ RModb,fg
Dn

X(U)D(CBornK), (3.249)

which furthermore is t-exact. In particular we obtain a sub-prestack

RModb,fg
Dn

X(−)D(CBornK) ⊆ RModDn
X(−)D(CBornK) : Xop

w → Cat∞. (3.250)

Proof. (i): By [AW19, Theorem 4.9], DnX(U) is flat on both sides as an abstract DnX(X)-
module. Hence the claim follows from [Bod21, Lemma 5.32], noting that the Tor-groups
in loc. cit. refer to the abstract Tor-groups.

(ii): Let M• be a bounded complex with finitely-generated cohomology groups. Using
the result of (i), an easy spectral sequence argument implies that

Hj(M•“⊗L

Dn
X(X)DnX(U)) ∼= Hj(M•)“⊗Dn

X(X)DnX(U), (3.251)

proving the Lemma.

Theorem 3.2.53. Let {Ui → X}si=1 be an admissible covering of X by pn-accessible
subdomains. Then the canonical morphism

RModb,fg
Dn

X(X)D(CBornK)→ lim
[m]∈∆

RModb,fg
Dn

X(Ym+1/X)
D(CBornK) (3.252)

is an equivalence of ∞-categories.

Proof. Let (M•
m)[m]∈∆ be an object of the right-hand side of (3.252). Because of Lemma

3.2.51, the only thing to show is that M•
−1 := R lim[m]∈∆M

•
m is bounded with finitely-

generated cohomology groups. We consider the hypercohomology spectral sequence

Epq2 : Rp lim
[m]∈∆

HqM•
m ⇒ Hp+q(M−1). (3.253)

This converges because (M•
m)[m]∈∆ is uniformly cohomologically bounded by Lemma

3.2.52. Further, Lemma 3.2.52 implies that

Hq(M•
k )“⊗Dn

X(Y k+1/X)DnX(Y l+1/X) ∼= Hq(M•
l ) (3.254)

is an isomorphism for every cosimplicial morphism [l] → [k]. Thus the counterpart of
Kiehl’s theorem in this setting [AW19, §5] then implies that

Rp lim
[m]∈∆

HqM•
m = 0, whenever p > 0. (3.255)
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Thus the spectral sequence (3.253) collapses and gives an isomorphism

HnM•
−1
∼= lim

[m]∈∆
Hn(M•

m)

= eq
(
Hn(M•

0 ) ⇒ Hn(M•
1 )
) (3.256)

which, by the theorem of descent for finitely-generated DnX -modules [AW19, §5], is a
finitely generated DnX(X)-module. Further, we see that the cohomological amplitude of
M•

−1 is contained in the same interval as M•
0 .

Scholium 3.2.54. Looking at the proof of Theorem 3.2.53, we notice that in fact

RMod
[c,d],fg
Dn

X(X)D(CBornK)→ lim
[m]∈∆

RMod
[c,d],fg

Dn
X(Ym+1/X)

D(CBornK) (3.257)

is an equivalence of ∞-categories, for any interval [c, d] ⊆ R with d <∞.

We remark that since each DnX(X) is flat (on both sides) as an abstract Dn+1
X (X)-

module the pullback functors restrict26 to functors

RModb,fg

Dn+1
X (X)

D(CBornK)→ RModb,fg
Dn

X(X)D(CBornK) (3.258)

for each n. There is an obvious functor

ϕ : DC(X)→ lim
n

RModb,fg
Dn

X(X)D(CBornK) (3.259)

which, on objects, sends M• 7→ (M•
n)n where M•

n = M•“⊗LÙDX(X)DnX(X).

Theorem 3.2.55. The functor

ϕ : DC(X)→ lim
n

RModb,fg
Dn

X(X)D(CBornK) (3.260)

is an equivalence of ∞-categories.

Proof. We will first show that, given a Cartesian section (N•
n)n belonging to the left-side

of (3.260), then N• := R limnN
•
n belongs to the full subcategory of C-complexes, so that

we obtain a right adjoint ψ : (N•
n) 7→ N• := R limnN

•
n to the functor ϕ above. (If we can

show that N• is a C-complex, then it will immediately follow that ϕ is fully-faithful, as
by definition we have M• ≃ ψϕ(M•) for any C-complex M•).

For each j ∈ Z, the system {Hj(N•
n)}n satisfiesHj(N•

n+1)“⊗Dn+1
X (X)DnX(X)

∼−→ Hj(N•
n),

by flatness27 of DnX(X) as a (left) Dn+1
X (X)-module. In particular the system {Hj(N•

n)}n
is pre-nuclear with dense images (c.f. the remark under [Bod21, Definition 5.24]). Hence
the usual short-exact sequence

0→ R1lim
n
Hj−1(N•

n)→ Hj(N•)→ lim
n
Hj(N•

n)→ 0 (3.261)

together with the Mittag-Leffler result of [Bod21, Theorem 5.26] implies that Hj(N•) ∼=
limnH

j(N•
n) has coadmissible cohomology. We claim that for each m, the canonical

morphism

N•“⊗LÙDX(X)DmX (X)→ N•
m (3.262)

26To be precise, this abstract flatness together with [Bod21, Lemma 5.32] implies that finitely generated
Dn+1

X (X)-modules are acyclic for −“⊗Dn+1
X

(X)
Dn

X(X), and then an easy spectral-sequence argument gives

the claim.
27See previous footnote.

109



Topics in derived analytic geometry

is an equivalence. We may take cohomology. By [Bod21, Corollary 5.38] coadmissible

right ÙDX(X)-modules are acyclic for (−)“⊗ÙDX(X)
DmX (X). This implies that

Hj(N•“⊗LÙDX(X)DmX (X)) ∼= Hj(N•)“⊗ÙDX(X)
DmX (X) (3.263)

for each j ∈ Z: indeed, when N• is bounded-above, this is an easy spectral-sequence
argument, and in general one writes N• as a (homotopy) colimit of its truncations, and
uses that the derived tensor product commutes with colimits separately in each variable.
However by properties of coadmissible modules we know that

Hj(N•)“⊗ÙDX(X)
DmX (X) ∼= Hj(Nm). (3.264)

This implies that (3.262) is an equivalence. By the comment above this implies that ϕ
is fully-faithful. In fact, looking at (3.262) we see that ϕψ ≃ id, so that (ϕ, ψ) give an
equivalence of categories.

Remark 3.2.56. We isolate the following useful fact from the proof of Theorem 3.2.55.
Let (N•

n)n be a Cartesian section belonging to the right side of (3.260). Then for each
j ∈ Z, N• := R limnN

•
n satisfies Hj(N•)

∼−→ limnH
j(N•

n).

Lemma 3.2.57. Let M• ∈ DC(X) and let n ⩾ 0. Then for every j ∈ Z there is an
isomorphism

Hj(M•“⊗LÙDX(X)DnX(X)) ∼= Hj(M•)“⊗ÙDX(X)
DnX(X). (3.265)

Proof. By [Bod21, Corollary 5.38], coadmissible right ÙDX(X)-modules are acyclic for

(−)“⊗LÙDX(X)DnX(X), which gives the claim (when M• is bounded-above, this is an easy
spectral-sequence argument, and in general one writes M• as a homotopy colimit of its
truncations and uses the commutation of tensor products with colimits).

Lemma 3.2.58. Let M• ∈ DC(X) and let U ⊆ X be an affinoid subdomain. Then:

(i) M•
U := M•“⊗LÙDX(X)

ÙDX(U) belongs to DC(U).

(ii) For each j ∈ Z, one has Hj(M•
U ) ∼= Hj(M•)“⊗ÙDX(X)

ÙDX(U).

In particular we obtain a sub-prestack

DC(−) ⊆ RModÙDX(−)
D(CBornK) : Xop

w → Cat∞. (3.266)

Proof. In the following argument we always take n large enough so that U is pn-accessible.
By associativity properties of the tensor product and Lemma 3.2.52 we know that each

M•
U
“⊗LÙDX(U)DnX(U) is bounded with finitely-generated cohomology. Now we show that the

canonical morphism

M•
U → Rlim

n
M•
U
“⊗LÙDX(U)DnX(U) (3.267)

is an equivalence. Let us first examine the left side of (3.267). By [Bod21, Proposition

5.37], coadmissible right ÙDX(X)-modules are acyclic for (−)“⊗ÙDX(X)
ÙDX(U). This implies

that
Hj(M•

U ) ∼= Hj(M•)“⊗ÙDX(X)
ÙDX(U) (3.268)
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for each j ∈ Z. Indeed, when M• is bounded above this follows from an easy spectral-
sequence argument, and in general one writes M• as a colimit of its truncations and uses
the commutation of tensor products with colimits.

Now let us examine the right side of (3.267). Using Remark 3.2.56 above, one has

Hj(Rlim
n
M•
U
“⊗LÙDX(U)DnX(U)) ∼= lim

n
Hj(M•“⊗LÙDX(X)DnX(U)). (3.269)

By Lemma 3.2.57, we know that

Hj(M•“⊗LÙDX(X)DnX(U)) ∼= Hj(M•)“⊗ÙDX(X)
DnX(U). (3.270)

So, to show that (3.267) is an equivalence we are reduced to showing that

Hj(M•)“⊗ÙDX(X)
ÙDX(U)→ lim

n
Hj(M•)“⊗ÙDX(X)

DnX(U) (3.271)

is an isomorphism for each j ∈ Z. This follows from [Bod21, Proposition 5.33] (see also
the preceding discussion about Ardakov–Wadsley’s “cap tensor product” in loc. cit.).

Corollary 3.2.59. Suppose that M• is a C-complex. Then the underlying object M• ∈
QCoh(X) belongs to sFr(X), so that there is an inclusion

DC(X) ⊆ RModÙDX(X)
sFr(X). (3.272)

Proof. Let U ⊆ X be an affinoid subdomain. Then by Lemma 3.2.58, M•“⊗LÙDX(X)
ÙDU (U)

is again a C-complex, whose underlying object in QCoh(X) is M•“⊗L

AAU . Now the claim
follows from Lemma 3.2.45.

Lemma 3.2.58 also has the following consequence. By functoriality of pullbacks, we
obtain a functor Xop

w → Fun(∆1,Cat∞) which sends U ∈ Xw to the 1-morphism

RModÙDX(U)
D(CBornK)→ lim

n
RModDn

X(U)D(CBornK). (3.273)

The upshot of Lemma 3.2.58 is that, by restriction of this functor, we obtain a functor
Xop
w → Fun(∆1,Cat∞) which sends U ∈ Xw to the (invertible) 1-morphism

DC(U)
∼−→ lim

n
RModb,fg

Dn
X(U)D(CBornK). (3.274)

We may use this implicitly in the following.

Theorem 3.2.60. Let {Ui → X}si=1 be an admissible covering of X by affinoid subdo-
mains. Let Y :=

∐s
i=1 Ui → X. Then the canonical morphism

DC(X)→ lim
[m]∈∆

DC(Y m+1/X) (3.275)

is an equivalence of ∞-categories.

Proof. In the following argument we always take n large enough so that all the {Ui}si=1

are pn-accessible. By Lemma 3.2.58 the following square commutes:

RModb,fg
Dn

X(X)D(CBornK) RModb,fg
Dn

X(Ym+1/X)
D(CBornK)

DC(X) DC(Y m+1/X)

(3.276)

111



Topics in derived analytic geometry

The bottom arrow is −“⊗LÙDX(X)
ÙDX(Y m+1/X), the right is −“⊗LÙDX(Ym+1/X)DnX(Y m+1/X),

the top is −“⊗L

Dn
X(X)DnX(Y m+1/X), and the left is −“⊗LÙDX(X)DnX(X). Passing to the limit

over n, using Theorem 3.2.55, and then taking the limit over [m] ∈ ∆, we see that the
morphism (3.275) is equivalent to

lim
n

RModb,fg
Dn

X(X)D(CBornK)→ lim
[m]∈∆

lim
n

RModb,fg
Dn

X(Ym+1/X)
D(CBornK)

≃ lim
n

lim
[m]∈∆

RModb,fg
Dn

X(Ym+1/X)
D(CBornK),

(3.277)

where in the last line we used that limits commute with limits. Hence, the claim follows
by taking limits over n in Theorem 3.2.53.

Definition 3.2.61. We define a pair of full subcategories

(D⩽0
C (X), D⩾0

C (X)) (3.278)

of DC(X) by M• ∈ D⩽0
C (X) (resp. M• ∈ D⩾0

C (X)) if Hj(M•) = 0 for all j ⩾ 1 (resp. if
Hj(M•) = 0 for all j ⩽ −1).

Lemma 3.2.62. With notations as above.

(i) The pair (D⩽0
C (X), D⩾0

C (X)) determines a t-structure on DC(X).

(ii) For U ⊆ X an affinoid subdomain, the pullback −“⊗LÙDX(X)
ÙDX(U) restricts to a t-

exact functor DC(X)→ DC(U).

Proof. (i): We need to check that if M• ∈ DC(X), then so does τ⩽0M• and τ⩾0M•.
Looking at Definition 3.2.43, we see that this follows immediately from Lemma 3.2.57
above.

(ii): This is Lemma 3.2.58.

Lemma 3.2.63. Let [c, d] ⊆ R be any interval with d < ∞. Let {Ui → X}ni=1 be an
admissible covering of X by affinoid subdomains. Let Y =

∐n
i=1 Ui. Then the natural

morphism

D
[c,d]
C (X)→ lim

[m]∈∆
D

[c,d]
C (Y m+1/X) (3.279)

is an equivalence of ∞-categories.

Proof. Let (M•
m)[m]∈∆ be an object of the right-side of (3.279). Due to Theorem 3.2.60,

and Lemma 3.2.62 the only thing to prove is that M•
−1 := R lim[m]∈∆M

•
m has cohomology

in the interval [c, d]. One argues in essentially the same way as the proof of Theorem 3.2.53.
We consider the hypercohomology spectral sequence

Epq2 : Rp lim
[m]∈∆

HqM•
m ⇒ Hp+q(M•

−1). (3.280)

This converges because (M•
m)[m]∈∆ is uniformly homologically bounded by Lemma 3.2.58.

Lemma 3.2.58 also implies that

Hq(M•
k )“⊗ÙDX(Y k+1/X)

ÙDX(Y l+1/X) ∼= Hq(M•
l ) (3.281)
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is an isomorphism for every cosimplicial morphism [l] → [k]. Then the counterpart of
Kiehl’s theorem in this setting [AW19, §8] implies that

Rp lim
[m]∈∆

HqM•
n = 0, whenever p > 0. (3.282)

Thus the spectral-sequence (3.280) collapses and gives an isomorphism

HnM•
−1
∼= lim

[m]∈∆
HnM•

m = eq(Hn(M•
0 ) ⇒ Hn(M•

1 )), (3.283)

which shows that the cohomological amplitude of M•
−1 is contained in the same interval

as M•
0 .

3.2.8 Compatibility with restrictions

Let X = Sp(A) be a classical affinoid equipped with an étale morphism X → Dr
K . Let

U ⊆ X be an affinoid subdomain. We recall from Example 3.2.10 that the square

U Ustr

X Xstr

⌜
(3.284)

is Cartesian in the category PStk. We recall that Strat(−) and QCoh(−) are functorial
with respect to upper-star pullbacks. Let Xw be the poset of affinoid subdomains of X.
Using the base-change equivalences from the six-functor formalism obtained in Theorem
3.1.69 we obtain a natural transformation of functors Xop

w → Cat∞:

p(−),! : QCoh(−)→ Strat(−), (3.285)

whose component for each U ∈ Xw is the lower-shriek pushforwards pU,! : QCoh(U) →
Strat(U) induced by pU : U → Ustr. By passing to right adjoints pointwise we a lax
natural transformation:

p!(−) : Strat(−)→ QCoh(−), (3.286)

whose component over U ∈ Xw is the upper-shriek pullback p!U . This essentially means
that the natural transformations in each square

Strat(X) QCoh(X)

Strat(U) QCoh(U)

p!X

t∗str t∗

p!U

(3.287)

can be composed vertically in a natural way. Here t : U ↪→ X is the inclusion.

Lemma 3.2.64. With notations as above. The natural transformation

t∗p!X → p!U t
∗
str (3.288)

restricts to an equivalence on the full subcategory spanned by those M ∈ Strat(X) such
that p!XM belongs to Fr(X) ⊆ QCoh(X).

Before proving this Lemma, let me say why it is relevant, first introducing the following
Definition:
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Definition 3.2.65. We define StratFr(X) ⊆ Strat(X) (resp. StratsFr(X) ⊆ Strat(X)) to
be the full sub-∞-category spanned by objects M such that p!XM belongs to Fr(X) (resp.
sFr(X)).

The upshot of Lemma 3.2.64 is twofold:

Corollary 3.2.66. (i) StratsFr(−) forms a sub-prestack of Strat(−) on Xw, with re-
spect to the upper-star functors.

(ii) The lax natural transformation (3.286) restricts to a natural transformation

p!(−) : StratsFr(−)→ sFr(−). (3.289)

We emphasise that the lax structure here is in fact strong, so that (3.289) is a natural
transformation of functors Xop

w → Cat∞, in which both sides are viewed as prestacks
via the upper-star functors.

Proof of Lemma 3.2.64. We would like to show that, for M ∈ StratFr(X), and an affinoid
subdomain t : U ↪→ X, the natural morphism

t∗p!XM → p!U t
∗
strM (3.290)

is an equivalence. Let us first consider the case when M = pX,!N for some N ∈ sFr(X).
(That such M belongs to StratsFr(X) is a consequence of Proposition 3.2.41). Then, we
are asking for

t∗D∞
XN = t∗p!XpX,!N → p!U t

∗
strpX,!N ≃ p!UpU,!t∗N = D∞

U t
∗N (3.291)

to be an equivalence, where in the last part we used base-change. Because N and t∗N are a
Frechet-strict complexes, by Theorem 3.2.40 this will follow if t∗D∞

X 1X ≃ D∞
U 1U . But this

can be deduced, for instance, from Proposition 3.2.39, because ÙDX(X)“⊗L

AAU
∼−→ ÙDU (U).

Now let us consider the general case. By monadicity (Theorem 3.2.34) of the adjunction
pX,! ⊣ p!X , every M ∈ StratFr(X) may be expressed as the colimit of a p!X -split simplicial
object:

M ≃ colim
[n]∈∆op

pX,!Nn, (3.292)

where Nn := (p!XpX,!)
np!XM . Each Nn belongs to sFr(X), by Proposition 3.2.41. Using

that p!X (resp. p!U ) commutes with geometric realizations of p!X -split (resp. p!U -split)
simplicial objects, and that the upper-star functors are colimit-preserving, we compute

t∗p!XM ≃ colim
[n]∈∆op

t∗p!XpX,!Nn

≃ colim
[n]∈∆op

p!U t
∗
strpX,!Nn ≃ p!U t∗strM,

(3.293)

where we used the previous case.

Lemma 3.2.67. With notations as above. Let t : U → X be the inclusion.

(i) There are restriction functors

ModD∞
X

sFr(X)→ ModD∞
U

sFr(U) (3.294)

induced by t∗ on sFr(X). These functors are natural in U , so that we obtain a
prestack ModD∞

(−)
sFr(−) on Xw.
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(ii) The equivalences StratsFr(X) ≃ ModD∞
X

sFr(X) is compatible with these restriction
functors, and the upper-star pullback functors on StratsFr (c.f. Corollary 3.2.66), so
that we obtain an equivalence

ModD∞
(−)

sFr(−) ≃ StratsFr(−) (3.295)

of prestacks on Xw.

Proof. This follows by combining Corollary 3.2.66, Theorem 3.2.34 and Corollary 2.2.7.

Remark 3.2.68. Before moving on we give a more concrete description of the restriction
functors in (i). Due to Lemma 3.2.64 and base-change, for each M ∈ sFr(X) there is a
canonical equivalence

σ : D∞
U t

∗ ≃ t∗D∞
X (3.296)

of functors on sFr(X). Due to naturality of base-change, this satisfies the expected nat-
uralities making t∗ into a monad functor from D∞

U 1U to D∞
X 1X . Roughly speaking, this

says that there are diagrams

t∗ D∞
X t

∗

t∗D∞
U

ηU t
∗

t∗ηX
σ (3.297)

and

D∞
X t

∗D∞
U D∞

XD∞
X t

∗ D∞
X t

∗

t∗D∞
U D∞

U t∗D∞
U

D∞
X σ µXt

∗

σD∞
U

t∗µU

σ (3.298)

of functors on sFr(X), which are homotopy-commutative, together with various higher
coherences. Then, if M ∈ ModD∞

X
sFr(X), there is a canonical D∞

U -module structure on
t∗M in which the action of D∞

U is given by the composite

D∞
U t

∗M
σ−→ t∗D∞

XM
t∗act−−−→ t∗M. (3.299)

Lemma 3.2.69. (i) There are restriction functors

RModD∞
X 1X QCoh(X)→ RModD∞

U 1U QCoh(U) (3.300)

induced by t∗ on sFr(X). These functors are natural in U , so that we obtain a
prestack on Xw.

(ii) The equivalence RModD∞
X 1X sFr(X) ≃ ModD∞

X
sFr(X) is compatible with these re-

strictions and those coming from (i), so that we obtain an equivalence

RModD∞
(−)

1(−)
sFr(−) ≃ ModD∞

(−)
sFr(−) (3.301)

of prestacks on Xw.
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Proof. (i): We note that there is a canonical equivalence of A-AU bimodule objects

D∞
U 1U ≃ D∞

X 1X“⊗L

AAU . (3.302)

Thus for M ∈ RModD∞
X 1X QCoh(X), the object t∗M = M“⊗L

AAU obtains the canonical
stucture of a D∞

U 1U -module object via

(M“⊗L

AAU )“⊗L

AU
D∞
U 1U ≃ (M“⊗L

AD∞
X 1X)“⊗L

AAU →M“⊗L

AAU , (3.303)

which gives the required restriction functors. A different way to say this is that the functor

t∗ = (−)“⊗L

AAU , together with the equivalence

σ′ : (−)“⊗L

AAU“⊗L

AU
D∞
U 1U ≃ (−)“⊗L

AD∞
X 1X“⊗L

AAU (3.304)

gives a monad functor (in the sense of Remark 3.2.68) from (−)“⊗L

AU
D∞
U 1U to (−)“⊗L

AD∞
X 1X .

(ii): We need to show that the natural transformation (3.210) is compatible with the
monad functors σ and σ′ of (3.296) and (3.304) respectively. Applying Lemma 2.2.21
(with V = D(CBornK) andM = D(CBornK) and, in the notations of that Lemma), there
is an adjunction

ι :A BModB V ⇆ Funlax
V (ModA V ,ModB V ) : κ. (3.305)

in which the left adjoint ι is fully-faithful. The equivalence σ : D∞
U t

∗ ≃ t∗D∞
X of functors

on sFr(X) comes from restricting the natural transformation τ : t∗D∞
X → D∞

U t
∗ of functors

on QCoh(X) = ModA V . We may view τ as a morphism in the category on the the right
side of (3.305). Now we note that the inverse of σ′ agrees with (the restriction to sFr(X)

of) ικ(τ): indeed, κικ(τ) identifies with D∞
X 1X“⊗L

AAU
∼−→ D∞

U 1U . Hence, using that
ικ→ id is a natural transformation we obtain the desired commutative square

D∞
U (−“⊗L

AAU ) (D∞
X (−))“⊗L

AAU

(−)“⊗L

AAU“⊗L

AU
D∞
U 1U (−)“⊗L

AD∞
X 1X“⊗L

AAU

≃σ

≃σ′

(3.306)

of endofunctors on sFr(X) in which the vertical arrows are induced by (3.210).

It is not hard to see that the equivalence

RModD∞
X 1X QCoh(X) ≃ RModÙDX(X)

D(CBornK) (3.307)

is compatible with restrictions to U ∈ Xw, so that there is an equivalence of prestacks

RModD∞
(−)

1(−)
QCoh(−) ≃ RModÙD(−)(−)

D(CBornK) (3.308)

on Xw. We recall from Definition 3.2.43 that the∞-category DC(X) is defined as a certain
full subcategory of RModÙDX(X)

D(CBornK). Under the equivalence (3.307), the image of

DC(X) factors through the full subcategory RModD∞
X 1X sFr(X), by Corollary 3.2.59. In

particular we obtain a fully-faithful functor

DC(X) ↪→ RModD∞
X 1X sFr(X) (3.309)

which is compatible with restrictions. Now combining all the assertions of Lemma 3.2.67
we obtain the following.
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Theorem 3.2.70. The functor DC(X) → Strat(X) is compatible with the restrictions
induced by the upper-star pullback functors on Strat. That is, there is a morphism

DC(−)→ Strat(−) (3.310)

of prestacks on Xw, which is pointwise fully-faithful.

3.2.9 Globalising the embedding of C-complexes

In this subsection X now denotes an arbitrary smooth rigid analytic variety. Let Xw(T )
denote the poset of affinoid subdomains of X which are étale over a polydisk (this is a
basis for the weak topology). There is obviously a functor

Xw(T )→ Xstrong (3.311)

where the latter is the poset of all admissible open subsets of X equipped with the strong
G-topology.

Definition 3.2.71. The stack of C-complexes on X is defined to be the right Kan extension
of the functor DC(−) : Xop

w (T )→ Cat∞ along Xop
w (T )→ Xstrong.

With this definition, one has (for an arbitrary rigid smooth variety X):

DC(X) = lim←−
U

DC(U), (3.312)

where the limit runs over all affinoid subdomains U ⊆ X which are étale over a polydisk.

Theorem 3.2.72. With notations as above:

(i) DC(−) is a sheaf of ∞-categories on Xstrong.

(ii) There is a fully-faithful functor DC(X) ↪→ Strat(X), which is compatible with re-
strictions to admissible open subsets U ⊆ X, so that we obtain a morphism

DC(−)→ Strat(−) (3.313)

of Cat∞-valued sheaves on Xstrong which is pointwise fully-faithful.

Proof. (i): Because Xw(T ) is a basis for Xstrong, this follows from [Man22, Proposition
A.3.11(ii)] and Theorem 3.2.55.

(ii): By Lemma 3.2.17, we know that for a smooth (classical) rigid variety X, that

Strat(X) ≃ lim←−
U

Strat(U), (3.314)

where the limit runs over all affinoid subdomains which are étale over a polydisk. In
particular the morphism (3.313) may be constructed using Theorem 3.2.70 and Kan ex-
tension. The fully-faithfulness also follows from Theorem 3.2.70, together with the fact
that the mapping space in a limit of ∞-categories, is the limit of the mapping spaces.

By Lemma 3.2.63, we obtain a subsheaf D♡
C (−) of DC(−) on Xw(T ). By Kan exten-

sion, we obtain a subsheaf D♡
C (−) of DC(−) on Xstrong.

Theorem 3.2.73. Let X be a smooth classical rigid-analytic space. The category D♡
C (X)

is equivalent to the category of coadmissible ÙDX-modules of [AW19, §9.4].
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Proof. By construction, the abelian category DC(X)♡ = D♡
C (X) satisfies

D♡
C (X) ≃ lim←−

U⊆X
D♡

C (U), (3.315)

where the limit runs over all affinoid subdomains U ⊆ X which are étale over a polydisk. It
is clear that each D♡

C (U) identifies with the category of coadmissible ÙDU (U)-modules. The
limit on the left is the (2,1)-limit in the sense of ordinary category theory. To be precise,
the (2, 1)-limit is defined to be the category of Cartesian sections of the Grothendieck
fibration corresponding to the Cat-valued presheaf D♡

C (−). In concrete terms, its objects
are collections (MU )U of objects in each category equipped with the data of equivalences

ϕUV : MU“⊗ÙDU (U)
ÙDV (V )

∼−→ MV for every affinoid subdomain V ⊆ U , which satisfy an

obvious cocycle condition. Thus, using [AW19, §8], we are reduced to proving that

{coadmissible DX -modules} ≃ lim←−
U

{coadmissible DU -modules} (3.316)

where the limit on the right is the (2, 1)-limit. Given [AW19, Theorem 9.4], this is tauto-
logical: the functor from left to right is given by restriction and the functor from right to
left glues a sheaf of DX -modules from local data, and the equivalence (3.316) expresses
the fact that being coadmissible is local on Xw(T ).

Corollary 3.2.74. Let X be a smooth rigid-analytic variety. There is a fully-faithful
functor

{coadmissible DX-modules} ↪→ Strat(X). (3.317)

In the future we may investigate the essential image of the functor DC(X) ↪→ Strat(X),
for X a smooth rigid-analytic space. As the next Proposition shows, it is not completely
obvious how to do this.

Proposition 3.2.75. Let X = dSp(K⟨x⟩) be the closed unit disk. Then the image ofÙDX(X) under the functor DC(X)→ Strat(X) is not a dualizable28 object.

Proof. Set A := K⟨x⟩. Recall the canonical morphism p : X → Xstr. The image of ÙDX(X)
under the functor DC(X) → Strat(X) is the object p∗1X ∈ Strat(X) = QCoh(Xstr).
Suppose for a contradiction that this object is dualizable. The functor p∗ is symmetric
monoidal, hence it preserves dualizable objects. So

p∗p∗1X ≃ (A“⊗KA)†∆ ≃ A“⊗KK⟨t/p∞⟩ (3.318)

would be a dualizable object of29 QCoh(X). We claim it isn’t: after simplification using

associativity of “⊗L
, this reduces to showing that the canonical morphism

RHomK(K⟨u/p∞⟩, A)“⊗L

KK⟨t/p∞⟩ → RHomK(K⟨u/p∞⟩, A“⊗KK⟨t/p∞⟩), (3.319)

is not an equivalence. Taking zeroth cohomology30, and then arguing using cofinality, it
is sufficient to show that

colim
m

lim
n
A“⊗KK⟨pns, t/pm⟩ → lim

n
colim
m

A“⊗KK⟨pns, t/pm⟩, (3.320)

28We recall that an object A of a symmetric monoidal ∞-category (V ,⊗) is called dualizable if there
exists another object A∨ ∈ V such that A⊗ (−) is adjoint to A∨ ⊗ (−).

29Here A“⊗KK⟨t/p∞⟩ is viewed as an A-module by the action on A only.
30In fact one can show that both sides are concentrated in degree 0, but this is not necessary for the

argument.
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is not an equivalence; here s is dual to u. We can explicitly describe both sides of (3.320).
The left side is:∑

k,l

ckls
ktl : ckl ∈ A,∃m∀n ∥ckl∥pnk−ml → 0 as k, l→∞

 , (3.321)

whereas the right side has the order of quantifiers reversed:∑
k,l

ckls
ktl : ckl ∈ A,∀n∃m ∥ckl∥pnk−ml → 0 as k, l→∞

 , (3.322)

and so we can exhibit an element which belongs to (3.322) but not (3.321), for instance∑
k,l s

ktl.
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Chapter 4

A possible alternative via
algebraic theories

This chapter is independent of the rest of the thesis and is not used elsewhere.

4.1 On six-functor formalisms associated to Lawvere theories

Let Fin denote the category of finite sets.

Definition 4.1.1. A Lawvere theory is a small category T with finite products, equipped
with a finite-product preserving functor T → Fin which is the identity on objects. We
write A1

T ∈ T for the object corresponding to the singleton ∗ ∈ Fin.
A morphism of Lawvere theories is a finite product-preserving functor over Fin. We

let Law denote the category of Lawvere theories.

Definition 4.1.2. Let Λ be a small set. A Λ-sorted Lawvere theory is a small category
T with finite products, equipped with a finite-product preserving functor T → Fin/Λ. We
write D1

T (λ) ∈ T for the object corresponding to λ : ∗ → Λ. A morphism of Λ-sorted
Lawvere theories is a finite product-preserving functor over Fin/Λ.

Definition 4.1.3. Let T be a (possibly Λ-sorted) Lawvere theory.

(i) We define the category of algebras of T as

AlgT := FunΠ(T ,Set), (4.1)

where FunΠ denotes the finite-product preserving functors.

(ii) We define the ∞-category of derived algebras of T as

dAlgT := FunΠ(T ,∞Grpd) = sInd(T op). (4.2)

The category AlgT is equivalent to the full subcategory of dAlgT on discrete (i.e,
0-truncated) objects, and this inclusion is reflective, with the reflector induced by π0 :
∞Grpd→ Set.

Example 4.1.4. The full subcategory of Ringsop on the objects {An
Z}n⩾0 forms a Lawvere

theory, denoted ComZ. Its category of algebras is the ordinary category of rings and its
∞-category of derived algebras is the ∞-category of animated rings.
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Definition 4.1.5. Let V be a presentably symmetric monoidal, stable ∞-category and
let T be a Lawvere theory. A V -realization of T is a finite coproduct-preserving functor
T op → CAlg(V ).

Let T op → CAlg(V ) be a V -realization of a Lawvere theory T . By [Lur09b, Propo-
sition 5.5.8.15(3)] this extends uniquely to a colimit-preserving functor

dAlgT → CAlg(V ). (4.3)

If we once again set E := CAlg(V )op then we obtain a limit-preserving functor dAlgopT → E
and hence a symmetric monoidal functor

Corr(dAlgopT , all)⊗ → Corr(E , all)⊗. (4.4)

By post-composing with the six-functor formalism of Proposition 2.3.13 we obtain a six-
functor formalism

QCoh : Corr(dAlgopT , all)⊗ → PrL,⊗st , (4.5)

in which every morphism f in dAlgopT satisfies f! = f∗. The Yoneda embedding induces
a morphism of geometric setups (dAlgopT , all)→ (PSh(dAlgopT ), rep) and again by [Man22,
Proposition A.5.16] we may extend QCoh to a six-functor formalism

QCoh : Corr(PSh(dAlgopT ), rep)⊗ → PrL,⊗st . (4.6)

In this six-functor formalism, for every morphism g ∈ rep satisfies g! ≃ g∗ (the proof of
this fact is identical to Corollary 2.3.16).

Theorem 4.1.6. There exists a (minimal) class of edges E ⊇ rep of PSh(dAlgopT ) such
that QCoh extends to a six-functor formalism on (PSh(dAlgopT ), E), and E is stable under
disjoint unions, ∗-local on the target, !-local on the source, is tame, and satisfies E ⊆ δE.

Proof. This is very similar to the proof of Theorem 2.3.17 and so we omit it.

Remark 4.1.7. The above construction has an obvious generalization to sorted and in-
finitary Lawvere theories.

Example 4.1.8 (Smooth geometry). Consider the (Archimedean) Banach field (R, | · |∞)
and the category CBornR of (Archimedean) complete bornological R-vector spaces [BK17].
We consider the Lawvere theory T = CartSm in which

Map(m,n) := Hom(C∞(Rn), C∞(Rm)). (4.7)

Here Hom denotes the continuous morphisms of Fréchet R-algebras. The functor which
endows C∞(Rn) with its precompact bornology [BK17] determines a finite coproduct-
preserving, fully-faithful functor

CartSmop → CAlg(D⩾0(CBornR)) ⊆ CAlg(D(CBornR)). (4.8)

Therefore we may apply the above formalism with V = D(CBornR). The category of
algebras for this Lawvere theory is C∞Alg and the ∞-category of derived algebras is the
∞-category of derived C∞-algebras:

dC∞Alg := FunΠ(CartSm,∞Grpd). (4.9)

We obtain a six-functor formalism

QCoh : Corr(Psh((dC∞Alg)op), E)⊗ → PrL,⊗st (4.10)

such that the class E ⊇ rep is stable under disjoint unions, ∗-local on the target, !-local
on the source, is tame and satisfies E ⊆ δE.
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Example 4.1.9 (Rigid-analytic geometry). Let K/Qp be a complete field extension con-
sidered as a non-Archimedean field, together with the category CBornK of non-Archimedean
complete bornological K-vector spaces. We consider the Q>0-sorted Lawvere theory T =
Tate in which Map(γ, γ′) := Hom(K⟨x′/γ′⟩,K⟨x/γ⟩) are the morphisms of affinoid alge-

bras (here γ, γ′ are tuples of elements of Q>0). There is an obvious functor

Tateop → CAlg(D⩾0(CBornK)) ⊆ CAlg(D(CBornK)). (4.11)

which is coproduct-preserving (by the flatness of Tate algebras with respect to “⊗K). There-
fore we may apply the above formalism with V = D(CBornK) and we obtain a six-functor
formalism

QCoh : Corr(Psh(AlgopTate), E)→ PrL,⊗st (4.12)

such that the class E ⊇ rep is stable under disjoint unions, ∗-local on the target, !-local
on the source, is tame and satisfies E ⊆ δE.

Example 4.1.10. More generally Example 4.1.9 still works if we replace the non-Archimedean
field K with any non-Archimedean Banach ring1 R. In particular we could take R =
(Z, | · |triv) and we obtain a “six-functor formalism in universal non-Archimedean geom-
etry”. If we take R = (Zp, | · |p) we obtain a “six-functor formalism for p-adic formal
stacks”. There are many more examples.

Example 4.1.11 (Entire functional calculus). Consider the (Archimedean) Banach field
(C, | · |∞) and the category CBornC of (Archimedean) complete bornological C-vector
spaces. We consider the Lawvere theory T = EFCC in which

Map(m,n) := Hom(Ohol(Cn),Ohol(Cm)). (4.13)

Here Hom denotes the continuous morphisms of Fréchet C-algebras, or equivalently bounded
morphisms for the von Neumann bornology. There is an obvious functor

EFCop
C → CAlg(D⩾0(CBornC)) ⊆ CAlg(D(CBornC)). (4.14)

which is coproduct preserving (by the flatness of Ohol(C) with respect to “⊗C). Therefore
we may apply the above formalism with V = D(CBornC). The category of algebras for
this Lawvere theory is EFCAlgC and the ∞-category of derived algebras is the ∞-category
of derived EFC-algebras:

dEFCAlgC := FunΠ(EFCop
C ,∞Grpd). (4.15)

We obtain a six-functor formalism

QCoh : Corr(Psh((dEFCAlgC)op), E)⊗ → PrL,⊗st (4.16)

such that the class E ⊇ rep is stable under disjoint unions, ∗-local on the target, !-local
on the source, is tame and satisfies E ⊆ δE.

4.2 Six-functor formalism for D∞-modules associated to a
Fermat theory

Now, inspired by [BK18] and [Tar25], we consider “six-functor formalisms forD∞-modules”.
If T is a Lawvere theory we let S 7→ FreeT {S} denote the left adjoint to the forget-
ful functor AlgT → Set. If Λ is a set and T is a Λ-sorted Lawevere theory we let
[λ : Λ→ Set] 7→ FreeT {S/λ} denote the left adjoint to the forgetful functor AlgT → SetΛ.

1We recall that for a general Banach ring R we define CBornR := IndmBanR, c.f. Remark 2.1.33.
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Definition 4.2.1. A Fermat theory is a Lawvere theory over ComZ satifying Hadamard’s
Lemma. Let z := (z1, . . . , zn). Then for each f(x, z) ∈ FreeT {x, z} we require that there
exists a unique g ∈ FreeT {x, y, z} (called the difference quotient) such that

f(x, z)− f(y, z) = (x− y)g(x, y, z). (4.17)

Remark 4.2.2. When Γ is a partially ordered abelian group (meaning that Γ is an abelian
group equipped with a translation-invariant partial order), one has a notion of Γ-sorted
Fermat theory [BBKK24, Definition 4.2.1].

The following result due to Dubuc and Kock [DK84] is fundamental.

Proposition 4.2.3. Let T be a Fermat theory and let A ∈ AlgT . Given any ring-
theoretic ideal I in A, then A/I acquires the canonical structure of a T -algebra such that
A→ A/I is a morphism of T -algebras.

Now using Proposition 4.2.3 we can define the notion of localization in an arbitrary
T -algebra.

Definition 4.2.4. Let T be a Fermat theory and let A ∈ AlgT and a ∈ A. The localiza-
tion of A at a is the quotient A{a−1} := (A

∐
FreeT {x})/⟨xa− 1⟩.

Remark 4.2.5. When T is a Γ-sorted Fermat theory (c.f. Remark 4.2.2) one can sim-
ilarly define for each A ∈ AlgT , a ∈ A and γ ∈ Γ the “rational localization” A{a/γ} :=
(A

∐
FreeT {x/γ})/⟨xa− 1⟩.

One can similarly define the localization at any collection of elements and this enjoys
the expected universal property [CR13, §3.3.4].

Definition 4.2.6. [BK18, Tar25] Let T be a Fermat theory.

(i) Let A ∈ AlgT with a ring-theoretic ideal I. We define the T -radical of I to be

T
√
I := ⟨a ∈ A : (A/I){a} ∼= {0}⟩ . (4.18)

(ii) Let A ∈ AlgT . The T -nilradical of A is defined to be T
√

0 and the T -reduction is
defined to be AT red := A/ T

√
0 ∈ AlgT .

(iii) Let X ∈ Psh(dAlgopT ). We define the T -de Rham space of X by XT dR(A) :=
X((π0A)T red). We let (−)T dR denote the corresponding endofunctor of Psh(dAlgopT ).

We may drop the T from all this notation when it is clear from the context.

Remark 4.2.7. When T is a Γ-sorted Fermat theory (c.f. Remarks 4.2.2 and 4.2.5) we
change the definition of T -radical to

T
√
I := ⟨a ∈ A : ∀γ ∈ Γ, (A/I){a/γ} ∼= {0}⟩ . (4.19)

Now let us continue with notations as in Theorem 4.1.6, but we assume in addition
that T is a Fermat theory. The endofunctor (−)T dR of Psh(dAlgopT ) evidently preserves
all limits (and colimits), and so we obtain a symmetric-monoidal functor

(−)T dR : Corr(Psh(dAlgopT ), ET dR)⊗ → Corr(Psh(dAlgopT ), E)⊗, (4.20)

here ET dR is the preimage of E under (−)T dR. Hence by post-composition, we obtain a
six-functor formalism

CrysT := QCoh ◦(−)T dR : Corr(Psh(dAlgopT ), ET dR)⊗ → PrL,⊗st . (4.21)

This is the “six-functor formalism for T -analytic D-modules on T -stacks”.
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Remark 4.2.8. The above construction has an obvious generalization to Γ-sorted Lawvere
theories, c.f. Remark 4.2.7.

Example 4.2.9. With notations as in Example 4.1.8. The Lawvere theory CartSm is
a Fermat theory. The notion of reduction introduced above is the ∞-reduction functor
R∞ : C∞Alg→ C∞Alg of Borisov–Kremnizer [BK18]. We obtain a six-functor formalism

CrysCartSm := QCoh ◦(−)dR : Corr(Psh((dC∞Alg)op), EdR)⊗ → PrL,⊗st . (4.22)

This is conjecturally a “six-functor formalism for D∞-modules on derived C∞-stacks”.
It is possible that these two Examples together with the results of §2.3.3 can inform the
construction of chiral algebras.

Example 4.2.10. With notations as in Example 4.1.9. The Lawvere theory Tate is a
Q>0-sorted Fermat theory. Following Remarks 4.2.5 and 4.2.7 and the above construction
we obtain a six-functor formalism

CrysTate := QCoh ◦(−)dR : Corr(Psh(AlgopTate), EdR)⊗ → PrL,⊗st . (4.23)

This is conjecturally a “six-functor formalism for ÙD-modules on derived Tate stacks”.

Example 4.2.11. With notations as in Example 4.1.11. The Lawvere theory EFCC is a
Fermat theory. We obtain a six-functor formalism

CrysEFC := QCoh ◦(−)dR : Corr(Psh((dEFCAlgC)op), EdR)⊗ → PrL,⊗st . (4.24)

This is conjecturally a “six-functor formalism for D∞-modules in complex Stein geome-
try”.
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