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What I will cover

I Much of the content of this talk is from a preprint I uploaded:
“A six-functor formalism for quasi-coherent sheaves and
crystals on rigid-analytic varieties” arXiv:2409.07592
[math.NT].

Plan of the talk
1. I will explain what a six-functor formalism is.
2. I will explain how to obtain a six-functor formalism in derived

rigid-analytic geometry, using the approach of
Ben-Bassat–Kelly–Kremnitzer.

3. I will explain how to use this to obtain a six-functor formalism
for “analytic crystals” which is related to the ÙD-modules of
Ardakov and Wadsley.



Philosophical discussion

I In analytic geometry, the notion of a quasi-coherent sheaf or
crystal is necessarily a derived notion, because of the failure of
flatness of affinoid localizations w.r.t. “⊗. (The naïve notion
fails to satisfy descent, c.f. Gabber’s example).

I For this reason, we systematically use higher category theory.
In fact, this is also an advantage because “derived geometry”
and “six-functor formalisms” are natively ∞-categorical
notions.

I By using higher category theory one also gains access to the
powerful machinery of presentable and stable categories, the
Barr–Beck–Lurie theorem, adjoint functor theorems, Mathew’s
theory of descendable algebras...



What is a six-functor formalism? I

I We start with a category C of “geometric objects” X
(admitting all fiber products). For instance we could have
C = Schemes, C = LCHaus, C = dRig.

I A six-functor formalism, roughly speaking, associates to each
X ∈ C a closed symmetric monoidal ∞-category (Q(X),⊗), in
a manner which satisfies a very large number of functorial
properties.



What is a six-functor formalism? II
We usually also single out a collection E of “special” or “!-able”
edges in C. The pair (C,E) is called a geometric setup.
I To each morphism f : X→ Y of C we associate a symmetric

monoidal “pullback” functor f∗ : Q(Y)→ Q(X).
I To each morphism f : X→ Y in E we associate a “compactly

supported pushforwards” f! : Q(X)→ Q(Y).
I For composable f, g we should have compatible isomorphisms

f!g! ' (fg)! and g∗f∗ ' (fg)∗.
This assigment should satisfy:
I base-change: g∗f! ' f′!g′,∗.
I projection formula: f! ⊗Y id ' f!(id⊗Xf∗).
I The functors (f∗, f!,⊗X) admit right adjoints (f∗, f!,HomX),

respectively.
Since the base change and projection formulas are themselves
required to be compatible with the composition isomorphisms this
leads to a potentially enormous number of things to check!



What is a six functor formalism? III
Remarkably, one can provide a succinct definition of a six-functor
formalism via the category of correspondences.
The ∞-category Corr(C,E) has:
I objects the same as those of C
I morphisms X 99K Y given by spans X g←− U f−→ Y with f ∈ E.

The composite of X← U→ Y and Y← V→ Z is given by
the composed span X← U← U×Y V→ V→ Z.

I monoidal structure built from the coCartesian monoidal
structure on Cop.

A lax-symmetric monoidal functor Q : Corr(C,E)→ Cat∞
determines functors

g∗ := Q(X g←− Y = Y) : Q(X)→ Q(Y) and
f! := Q(X = X f−→ Y) : Q(X)→ Q(Y) and

⊗X : Q(X)×Q(X)→ Q(X).



What is a six-functor formalism? IV

Definition (Liu-Zheng, Gaitsgory-Rozenblyum, Mann)
A six-functor formalism on (C,E) is a lax-symmetric monoidal
functor

Q : Corr(C,E)→ Cat∞
such that all the g∗, f!, ⊗X admit right adjoints.
I This definition provides a viable way to manipulate six-functor

formalisms and produce new ones out of old ones.
I Can streamline proof of complicated theorems e.g.

Poincaré/Grothendieck-Verdier duality (Zavyalov ’23).
I Six-functor formalisms can help to inform us what the

“correct” definitions of some objects/functors should be, see
(for instance) work of Heyer–Mann on smooth representations.



On the construction of six-functor formalisms
I One can often use [Man22, Prop A.5.12] to construct a basic

six-functor formalism Q on (C,E0) for some class E0.
I Then following [Sch22, Thm 4.20] we developed an extension

formalism for abstract six-functor formalisms, to extend Q to
(C,E) for some larger class E with good stability properties:
I being local on the source;
I local on the target;
I stable under disjoint unions;
I and tame.

I The required extension is obtained as a transfinite
composition of Mann’s extension principles.

I Intuitively, this extension formalism is a systematic way to
construct compact supports in such a way that the compactly
supported pushforwards has the best possible categorical
properties.

I Subsequently, a similar extension formalism, plus much more,
has been developed in the recent work of Heyer–Mann.



Derived rigid geometry I
I Rigid analytic geometry was introduced by Tate (’71). In

some ways it behaves similarly to complex-analytic geometry,
but lives over p-adic fields K/Qp rather than C.

I In order to obtain a six-functor formalism for quasi-coherent
sheaves, one has to “derive” rigid geometry, in order to obtain
base-change.

I Our theory of derived rigid spaces follows
Ben-Bassat–Kelly–Kremnitzer. In the spirit of Toën–Vezzosi
and Deligne, (derived) analytic geometry is viewed as a precise
analogue of (derived) algebraic geometry done relative to the
symmetric monoidal ∞-category D≥0(CBornK).

I The category CBornK of complete bornological spaces can be
thought of as a substitute for locally convex K-vector spaces,
but with better homological and algebraic properties. See
Jack Kelly, “Homotopy in exact categories”, Mem. Amer.
Math. Soc. (’24).



Derived rigid geometry II
I We define a full category dAfndAlg ⊆ CAlg(D≥0(CBornK))

and Afnd := dAfndAlgop whose objects are denoted dSp(A).
We define the weak Grothendieck topology. The prestack

QCoh(dSp(A)) := ModA(D(CBornK))

satisfies descent in the weak topology.
I We define a certain full subcategory of derived rigid spaces:

dRig ⊆ Shvweak(dAfnd,∞Grpd),
equipped with a strong Grothendieck topology. By Kan
extension, QCoh extends to a sheaf on dRig.

I For X ∈ dRig the small site Xstrong is really a locale, which is
spatial, i.e., comes from a sober topological space |X|. The
space |X| is invariant under classical truncation. When
X = dSp(A) we have

|X| ' | Spa(π0A, (π0A)◦)|,
where the latter is the Huber spectrum.



Six-functor formalism for rigid spaces
Example
By proving base-change and the projection formula for qcqs
morphisms “by hand” and then using [Man22, Prop A.5.12] we can
extend QCoh to a basic six-functor formalism

QCoh : Corr(dRig, qcqs)→ PrL
st.

in which every qcqs morphism f satisfies f! = f∗. By the extension
formalism we can extend this to a six-functor formalism on
(dRig,E) for a much larger class E.

I A priori it is not clear that E contains any interesting
morphisms besides the qcqs ones.

I We show that a certain class of infinite covers is of universal
!-descent.

I This can be used to show that every relative Stein space
belongs to E.



Local cohomology.
I In order to place an analytic strucure on more general subsets

S ⊆ |X|, we define the categories Pairs and Germs.
Definition

1. The category Pairs consists of objects (X, S), where S ⊆ |X| is a
closed subset such that j : U ↪→ X satisfies j! ∼−→ j∗. (Here U is the
complement of S.)

2. We define

QCoh(X, S) := ΓS QCoh(X) ⊆ QCoh(X),

as the full subcategory on objects supported along S ⊆ |X|.

I The inclusion admits both a right and a left adjoint:

“local homology” LS a inclS a ΓS “local cohomology”.
I The category Germs is obtained by localizing Pairs with

respect to an “obvious” system of morphisms.
I We will write (X, S) 7→ [(X, S)] for the image of (X, S) under

the localization functor.



Crystals I
I Using the operations LS and ΓS one can obtain a six-functor

formalism on Pairs and Germs.
I For example: for a morphism f : (X, S)→ (Y,T) the

upper-star functor is LS f∗ and the upper-shriek functor is ΓSf!.
I We take

PStk := PSh(qcqsGerms,∞Grpd)
to be our ambient category of analytic prestacks. By Kan
extension, one obtains a six-functor formalism QCoh on
(PStk, Ẽ) for some class Ẽ.

I For separated f : X→ Y, we define the “analytic” infinitesimal
groupoid

Inf(X/Y)• := [(X•+1/Y, |∆•+1/YX|)] ∈ sPStk,

and the relative “analytic” de Rham space

(X/Y)dR := lim−→
[n]∈∆op

Inf(X/Y)n ∈ PStk.



Crystals II

I We identify a class of good morphisms. The functor (−)dR
preserves pullbacks of edges in good and (−)dR takes good
into Ẽ. Hence, it induces

(−)dR : Corr(qcsdRig, good)→ Corr(PStk, Ẽ).

I By post-composition we obtain a six-functor formalism

Crys := QCoh ◦(−)dR

on (qcsdRig, good) which, by the extension formalism, can be
extentded to a six-functor formalism on (dRig,EdR) for some
large class EdR.

I The class good contains all open immersions and projections
off smooth classical affinoids with free tangent bundle.



Crystals III

I Crys, viewed as a prestack on dRig, satisfies descent in the
analytic topology.

Theorem (Kashiwara’s equivalence)
If i : Z→ X is a Zariski-closed immersion which is locally a
neighbourhood retract, the the pair (idR,∗, i∗dR) induces an
equivalence

Crys(Z) ' ΓZ Crys(X),

where the latter is the full subcategory of objects supported along
Z ⊆ |X|.



Monadicity
By definition, we have Crys(X) = QCoh(XdR). We would like to
understand this category better. There is a canonical morphism

p : X→ XdR

which in fact satisfies p! ∼−→ p∗. So we get an adjoint triple
p∗ a p∗ a p!:

QCoh(X) QCoh(XdR).p∗

p∗

p!

Theorem (S.)
I The adjunction p∗ a p∗ is comonadic.
I If X is a smooth affinoid with free tangent bundle then the

adjunction p∗ a p! is monadic.

So we can describe QCoh(XdR) as a category of comodules over
the comonad p∗p∗ or modules over the monad p!p∗.



Differential monad and jet comonad
Now we would like to understand the comonad p∗p∗ and the
monad p!p∗. We have a Cartesian square

[(X× X,∆X)] X

X XdR

π1

π2
y p

p

and hence, by base-change, we obtain equivalences

p!p∗ ' π1,∗Γ∆π
!
2 and p∗p∗ ' π2,∗ L∆ π∗

1.

Definition
I D∞

X/K := p!p∗ ' π1,∗Γ∆π!
2 is called the monad of differential

operators.
I J∞

X/K := p∗p∗ ' π2,∗ L∆ π∗
1. is called the comonad of jets.



A connection to work of Ardakov–Wadsley

Theorem
When X is a classical smooth affinoid with free tangent bundle,
D∞

X/K1X ' ÙDX/K(X) in QCoh(X), where the latter is the
infinite-order differential operators of Ardakov-Wadsley (viewed as
an object concentrated in degree 0).



Formulas for the six operations of Crys(X)
Theorem (S.)
Let f : X→ Y be a morphism in dRig (possibly !-able).
(I) f∗dR is given by f∗ : ComodJ∞

Y/K
→ ComodJ∞

X/K
.

(II) fdR,∗ is given by

lim←−
[n]∈∆

D∞
Y/Kf∗(J∞

X/K)
n : ComodJ∞

X/K
→ ModD∞

Y/K
.

(III) fdR,! is given by

lim−→
[n]∈∆op

J∞
Y/Kf!(D∞

X/K)
n : ModD∞

X/K
→ ComodJ∞

Y/K
.

(IV) f!dR is given by f! : ModD∞
Y/K
→ ModD∞

X/K
.

(V) The tensor product on ComodJ∞
X/K

is given by that of
QCoh(X).

(VI) We can also give a formula for the internal Hom (omitted).



Future work

I By using the recent work of Heyer–Mann (and their
construction of the category of kernels) and the theory of
six-functor formalisms it should be possible to develop a good
theory of Fourier–Mukai transforms in analytic geometry.

I We expect that there is a coalgebra structure (with respect to
convolution) on L∆ 1X×X which induces the comonad J∞

X .
I By choosing a system Un of neighbourhoods of the diagonal

∆X in X× X, one should be able to write XdR = lim−→n XdR,n in
such a way that, for smooth X, the fibers of pn : X→ XdR,n
look like the open unit disk. Then pn should be
cohomologically smooth, so that the theory of FM transforms
applies to Dn

X := p!npn,! and one obtains an equivalence

QCoh(XdR) ' lim←−n
ModDn

X1X QCoh(X).
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