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Abstract

These are notes for a learning seminar talk on diamonds. These notes basically
lifted from other places. The main references are [Wei17] and [SW20]. All typos are
my own!

1 Plan

Let Qp ⊆ E ⊆ Cp be complete field extensions with E/Qp finite. Let π ∈ oE be a
uniformizer, let Fq/Fp be the residue field of E.

• Using Lubin-Tate theory we will construct the perfectoid open unit disk ‹DCp

over Cp which is an E-vector space object in perfectoid spaces. Then ‹D∗
Cp

:=‹DCp \ {0} carries an action of E×

• We will prove that the diamond Z := ‹D∗,⋄
Cp

/E× has πét
1 (Z) ∼= Gal(E/E) =: GE .

Therefore GE is a geometric fundamental group. Here the adjective geometric
refers to the fact that ‹D∗

Cp
is defined over an algebraically closed field.

The proof roughly goes as follows.

• In addition to the obvious structural morphism to Spa(C♭
p, oC♭

p
) the space

(‹D∗
Cp

)♭ also lives over the perfectoid field E♭
∞ = Fq((X

1/q∞)).

• One notices that the “unquotiented” adic Fargues–Fontaine curve is an untilt
of (‹D∗

Cp
)♭ over E♭

∞:

(‹D∗
Cp

)♭ ∼= (YE“⊗E∞)♭. (1)

This is o×E-equivariant (o×E acts on E∞ by the Lubin–Tate character). The
action of π on the right corresponds to φ−1 ⊗ 1 on the left up to absolute
Frobenius. This shows that ‹D∗,⋄

Cp
/E× = (XE)

⋄ (2)

where XE = YE/φ
Z is the Fargues–Fontaine curve.

• Therefore it suffices to classify finite étale covers of XE . For this we will use
the classification of vector bundles on the Fargues–Fontaine curve XE together
with the correspondence

{fét covers f : X ′ → X} ↔ {fin. loc. free OX -algebras w. perfect trace pairing}.

sending [f : X ′ → X] 7→ f∗OX′ and inverse given by the relative spectrum.
In other words we want to show that when X = XE , every object on the
right-hand has trivial underlying vector bundle.

As a corollary of the“Main Theorem” there is a correspondence

{connected fét deg n covers of ‹D∗,⋄
Cp

/E×} ↔ {deg n field extensions E′/E}. (3)

Time permitting, I’ll try to describe the cover on the left corresponding to an E′/E
on the right.

1



Gal(E/E) as a geometric fundamental group

2 Perfectoid spaces arising as adic generic fibers.

Lemma 2.1. Let K be a nonarchimedean field with pseudo-uniformizer ϖ, let R
be a flat oK-algebra which is adic and complete for a f.g. ideal I ∋ ϖ. Say I =
(f1, . . . , fr, ϖ). Set

Sn := R⟨fn
1 /ϖ, . . . , fn

r /ϖ⟩, Rn := Sn[1/ϖ], R+
n := int. clos.(Sn ⊆ Rn). (4)

Then Spa(R,R)η = lim−→ Spa(Rn, R
+
n ).

Proof. We will show that the functor of points is the same. Looking at the definition
of Spa(R,R)η as the fiber over Spa(K, oK)→ Spa(oK , oK), we see its (T, T+) points
are continuous oK-linear homomorphisms g : R → T+. The g(fi) are topologically
nilpotent and hence g(fi)

n ⊆ ϖT+ for some n and all i. So g extends to Sn → T+

and we get (Rn, R
+
n ) → (T, T+) by taking completions and integral closures and

inverting ϖ (in the right order).

Example 2.2. Spa(oK [[X]], oK [[X]])η is the rigid open unit disk.

Lemma 2.3. Let K be a perfectoid field of characteristic 0 with pseudo-uniformizer
ϖ. Let R be an oK-algebra which is adic and complete for a f.g. ideal I. Assume
that R/ϖ is semiperfect. Then (Spa(R,R))♭

η♭ and Spa(R,R)η are perfectoid and

Spa(R♭, R♭)η♭ = (Spa(R,R))♭η♭ = (Spa(R,R)η)
♭. (5)

Proof. I will give the covers by affinoid perfectoids without justfication. For details
see [Wei17]. Let f1, . . . , fr be generators for an ideal of definition of R♭. The cover
is given as in Lemma 2.1:

Spa(R♭, R♭)η♭ = lim−→ Spa(R♭
n, R

♭,+
n ), (6)

where R♭
n = R♭⟨fn

i /ϖ⟩[1/ϖ], and

Spa(R,R)η = lim−→ Spa(Rn, R
+
n ), (7)

where Rn = R⟨f ♯,n
i /ϖ⟩[1/ϖ]. Further, one has Spa(Rn, R

+
n )

♭ = Spa(R♭
n, R

♭,+
n ).

3 The perfectoid open unit disk

Lubin–Tate theory. Let ϕ(X) ∈ oE [[X]], be a Frobenius power series (mean-
ing ϕ = πX(modX) and ϕ = Xq(modπ)). Let Fϕ(X,Y ) ∈ oE [[X,Y ]] be the
corresponding Lubin–Tate formal group law with ϕ ∈ End(Fϕ). Then there is
[.]ϕ : oE → End(Fϕ) with [π]ϕ = ϕ and [a]ϕ = aX + . . . . We define

Fn := {z ∈ mCp : [πn]ϕ(z) = 0}, En := E(Fn), (8)

and we define E∞ to be the completion of
⋃

n En. Lubin–Tate theory asserts that
the Tate module F∞ := lim←−n

Fn is free of rank 1 as an oE-module so that the choice

of basis element determines a character χE : Gal(E∞/E)→ o×E , which turns out to
be an isomorphism. The field E∞ is perfectoid with tilt

E♭
∞ = Fq((X

1/q∞)), and oE♭
∞

= Fq[[X
1/q∞ ]]. (9)

Example 3.1. When E = Qp one takes π = p, ϕ = (1+X)p − 1, then Fϕ(X,Y ) =
(X + 1)(Y + 1) − 1 is the multplicative law and [a]ϕ = (1 + X)a − 1 for a ∈ Zp.
We obtain Fn = {ζ − 1 : ζp

n

= 1} and En = Qp(ζpn), and χE is the cyclotomic
character. (One can do almost the same thing for unramified extensions E/Qp).
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The perfectoid open unit disk. We define DE := Spa(oE [[X]], oE [[X]])η and

RE :=
(
lim−→
ϕ

oE [[X]]
)∧
(π,X)

so that Spa(RE , RE) = lim←−
Spa(ϕ)

Spa(oE [[X]], oE [[X]]).

(10)

Then ‹DE := Spa(RE , RE)η is an E-vector space objects in adic spaces. If ‹DCp

denotes the base-change of ‹DE from E to Cp then ‹DCp then by Lemma 2.3 one has

• ‹DCp = Spa(RCp , RCp)η is perfectoid and (‹DCp)
♭ = Spa(R♭

Cp
, R♭

Cp
)η♭ .

In order to make the connection to the Fargues–Fontaine curve later, let us describe
this tilt a little more explicitly. The special fiber Spa(RE , RE)s equals

lim←−
(.)q

Spa(Fq[[X]],Fq[[X]]) ∼= Spa(Fq[[X
1/q∞ ]],Fq[[X

1/q∞ ]]), (11)

or if you prefer Fq“⊗oERE = Fq[[X
1/q∞ ]]. We use this isomorphism in the second

line below:

Spa(oC♭
p
“⊗FqFq[[X

1/q∞ ]]) ∼= lim←−
(.)q

Spa(oC♭
p
/ϖoC♭

p
“⊗FqFq[[X

1/q∞ ]])

∼= lim←−
(.)q

Spa(RCp/ϖRCp) = Spa(R♭
Cp

).
(12)

In the first line we used that Fq[[X
1/q∞ ]] is perfect. In other words, passing to generic

fibers and deleting 0, we obtained an isomorphism

Spa(oC♭
p
“⊗FqoE♭

∞
)η \ {π = ϖ = 0} ∼= ‹D∗,♭

Cp
. (13)

This isomorphism is equivariant for the action of o×E (on the left from tilting the
Lubin–Tate character, and on the right from tilting the o×E action). There is a minor
subtlety in matching up the Frobenius on oC♭

p
with the action of π on the right

[Wei17, Lemma 4.0.9]. Conceptually, we’ve given a different presentation of the

diamond ‹D∗,⋄
Cp

/E×.

4 The Fargues–Fontaine curve.

We recall the construction of the Fargues–Fontaine curve from Ken’s talk. Actually,
it can be constructed as the generic fiber of a formal scheme. We may define Bb,+ :=
WoE (oC♭

p
) where the subscript oE denotes ramified Witt vectors, equipped with the

usual (π, [ϖ])-adic topology. Then Bb,+ is an oE-algebra and, as is usual for Witt
vector constructions, is equipped with a Frobenius endomorphism coming from the
Frobenius on oC♭

p
. We define

YE := Spa(Bb,+, Bb,+)η \ {π = [ϖ] = 0} and XE := YE/φ
Z. (14)

We note that (WoE (oC♭
p
) ⊗oE oE∞)/π = oC♭

p
“⊗FqoE∞/π, so that by taking lim−→(.)q

we obtain (Bb,+“⊗oEoE∞)♭ = oC♭
p
⊗Fq oE♭

∞
. Hence by Lemma 2.3 and the previous

section one has

(YE“⊗EE∞)♭ = Spa(oC♭
p
“⊗FqoE♭

∞
)η \ {π = ϖ = 0} ∼= ‹D∗,♭

Cp
, (15)

via an o×E-equivariant isomorphism. We will continue to ignore the minor subtlety
in matching up the φ and π actions. Hence we obtain an isomorphism

πét
1 (‹D∗,⋄

Cp
/E×) ∼= πét

1 (XE). (16)
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4.1 The Fargues–Fontaine curve is geometrically simply
connected

Finally, we will prove that πét
1 (XE) ∼= GE . For this we recall the Dieudonné–Manin

classification of vector bundles on XE . We let Ĕ := WoE (Fq)[1/π] denote the max-
imal unramified extension of E. Note that YE lies over Spa(Ĕ) and the Frobenius
endomorphism φ of YE lies over that of Ĕ, so we get XE → Ĕ/φZ. Therefore, we
can pull back vector bundles on Ĕ/φZ.

Vector bundles on Ĕ/φZ are called isocrystals. This is (by definition) the same
as a finite-dimensional Ĕ-vector space M equipped with the data of an isomorphism
φM : φ∗M

∼−→ M . The pullback of (M,φM ) amounts to the φ-equivariant vector
bundle (O ⊗Ĕ M,φ⊗ φM ) on YE which we regard as a vector bundle E(M) on XE .

The category of isocrystals is semisimple and there is a bijection λ 7→ M(λ)
between (reduced) rationals and isomorphism classes of simples. For such we define
O(λ) := E(M(−λ)). For example O(0) = OXE . Now we can state the classifcation
of vector bundles on the curve:

Theorem 4.1. • Every vector bundle E on XE is isomorphic to a vector bundle
of the form

⊕n
i=1O(λi) for a unique sequence of rational numbers λ1 ≤ · · · ≤

λn.

• If λi = di/ri in reduced form then

O(λ1)⊗O(λ2) ∼= O(λ1 + λ2)
⊕(r1,r2). (17)

• The global sections are

H0(XE ,O(λ)) ∼=


a Banach–Colmez space if λ > 0,

E, if λ = 0,

0, if λ < 0.

(18)

Theorem 4.2. The Fargues–Fontaine curve is geometrically simply connected.

Proof. Let X := XE and O := OX . As observed at the beginning of the talk, it
suffices to show that every finite locally free O-algebra A with perfect trace pairing
A⊗A → O has trivial underlying vector bundle. Let us say that A =

⊕
iO(λi) for

λ1 ≤ · · · ≤ λs. Because the vector bundleA is self–dual one has deg(A) = deg(A∨) =
−deg(A), which reads (

∏
i ri)(

∑
i λi) = −(

∏
i ri)(

∑
i λi) and so

∑
i λi = 0. Let

λ := λs ≥ 0. Assume (for a contradiction) that λ > 0. The multiplication gives
A⊗A → A which restricts to O(λ)⊗O(λ)→ A which gives a global section

f ∈ Hom(O(λ)⊗O(λ),A) = H0(X,A⊗O(−2λ))⊕r, (19)

which must be zero because the latter has all negative slopes. We conclude that every
f ∈ H0(X,O(λ)) ⊆ H0(X,A) satisfies f2 = 0. Because A is a finite étale O-algebra,
H0(X,A) is reduced we must then have H0(X,O(λ)) = 0, so λ < 0, contradiction.

So all λi = 0 and the underlying vector bundle of A is trivial.

5 Explicit description of finite étale covers of ‹D∗,⋄
Cp
/E×

The previous constructions depended on the field E. We will no longer suppress this
dependence in our notation, so let ZE := ‹D∗,⋄

E,Cp
/E×.

We will show that a finite extension E′/E of fields induces a “norm” morphism
of diamonds NE′/E : ZE′ → ZE which fits into a commutative square

πét
1 (ZE′) πét

1 (ZE′)

GE′ GE

(20)
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The following sketch can be found in the Berkeley notes. Let n = [E′ : E]. We note
that DĔ′ is a rigid p-divisible group of height n and dimension 1. By the work of
[Hed10] we may take its “nth exterior power” which is a rigid p-divisible group of

dimension 1 and height one, so isomorphic to “Gm,o
Ĕ′ and so we obtain an alternating

map λ : Dn
Ĕ′ → “Gm,o

Ĕ′ . If one chooses an oE-basis α1, . . . , αn for oE′ then we
may define NE′/E(x) := λ(α1x, . . . , αnx) which gives NE′/E : DE′,Cp → DE,Cp

after base change. By construction NE′/E(αx) := NE′/E(α)NE′/E(x) so we get

NE′/E : ‹DE′,Cp → ‹DE,Cp which is equivariant for the norm map E′ → E, so finally
we get ZE′ → ZE .
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