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Abstract

These are notes for a learning seminar talk on diamonds. These notes basically
lifted from other places. The main references are [Weil7] and [SW20]. All typos are
my own!

1 Plan

Let Qp, C E C C,, be complete field extensions with £/Q, finite. Let m € og be a
uniformizer, let Fy/F, be the residue field of E.

e Using Lubin-Tate theory we will construct the perfectoid open unit disk 13cp
over C, which is an E-vector space object in perfectoid spaces. Then D*cp =
Bcp \ {0} carries an action of E*

e We will prove that the diamond Z := ﬁEZ/EX has 7$"(Z) = Gal(E/E) =: Gg.

Therefore Gk is a geometric fundamental group. Here the adjective geometric
refers to the fact that DEP is defined over an algebraically closed field.

The proof roughly goes as follows.
e In addition to the obvious structural morphism to Spa(C;,oC; ) the space
(]52‘3p)b also lives over the perfectoid field E = Fy(XY7).
e One notices that the “unquotiented” adic Fargues—Fontaine curve is an untilt
of (D’(‘jp)b over E’:
(Dg,) = (Ye®Ex)'. (1)
This is ojx-equivariant (o acts on Es by the Lubin-Tate character). The

action of m on the right corresponds to ¢! ® 1 on the left up to absolute
Frobenius. This shows that

DS /E* = (Xp)° (2)

where Xp = Yi/¢? is the Fargues—Fontaine curve.

e Therefore it suffices to classify finite étale covers of Xg. For this we will use
the classification of vector bundles on the Fargues—Fontaine curve X together
with the correspondence

{fét covers f: X' — X} < {fin. loc. free Ox-algebras w. perfect trace pairing}.

sending [f : X' — X] — f.Oxs and inverse given by the relative spectrum.
In other words we want to show that when X = Xg, every object on the
right-hand has trivial underlying vector bundle.

As a corollary of the“Main Theorem” there is a correspondence

{connected fét deg n covers of ﬁEZ/EX} <+ {deg n field extensions E'/E}. (3)

Time permitting, I'll try to describe the cover on the left corresponding to an E'/E
on the right.
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2 Perfectoid spaces arising as adic generic fibers.

Lemma 2.1. Let K be a nonarchimedean field with pseudo-uniformizer w, let R
be a flat ox-algebra which is adic and complete for a f.g. ideal I 5 w. Say I =

(fi,..., fr,wm). Set
Sy = R{f{")w,..., /@), Rn:=Su[l/w], R} :=int. clos.(Sn C Rn). (4)
Then Spa(R, R), = lim Spa(Rn, R).

Proof. We will show that the functor of points is the same. Looking at the definition
of Spa(R, R)., as the fiber over Spa(K, ox) — Spa(ox, ox), we see its (T, T") points
are continuous ox-linear homomorphisms g : R — T". The g(f;) are topologically
nilpotent and hence g(f;)" C wT " for some n and all i. So g extends to S, — T
and we get (Rn,R)}) — (T,T") by taking completions and integral closures and
inverting w (in the right order). O

Example 2.2. Spa(ox[X],ox[X])y is the rigid open unit disk.

Lemma 2.3. Let K be a perfectoid field of characteristic 0 with pseudo-uniformizer
w. Let R be an ok -algebra which is adic and complete for a f.g. ideal I. Assume
that R/w is semiperfect. Then (Spa(R, R));,, and Spa(R, R),, are perfectoid and

Spa(R’, R’),» = (Spa(R, R)),, = (Spa(R, R)»)". (5)

nb

Proof. 1 will give the covers by affinoid perfectoids without justfication. For details
see [Weil7]. Let fi,..., fr be generators for an ideal of definition of R®. The cover
is given as in Lemma 2.1:

Spa(Rb, Rb)nb = m Spa(REm R':'LYJF)? (6)
where R’, = R*(f'/w)[1/w], and
Spa(R, R), = 1i_1f1>1Spa(Rn7 RI), (7)

where R, = R(f*"/w)[1/w]. Further, one has Spa(R,, R;)’ = Spa(R’,, R;"). O

3 The perfectoid open unit disk

Lubin—Tate theory. Let ¢(X) € og[X], be a Frobenius power series (mean-
ing = 7X(mod X) and ¢ = X%(modm)). Let Fyu(X,Y) € or[X,Y] be the
corresponding Lubin-Tate formal group law with ¢ € End(Fy). Then there is
[J¢ : o8 — End(Fy) with [r]y = ¢ and [a]s = aX + ... . We define

Fni={z€mg, : [1"]s(2) =0}, En:=E(Fn), (8)

and we define Eo to be the completion of Un FE,. Lubin—Tate theory asserts that
the Tate module Foo := l(inn JFn is free of rank 1 as an og-module so that the choice
of basis element determines a character xg : Gal(Fo/E) — 0}, which turns out to
be an isomorphism. The field E is perfectoid with tilt

Bl =F,(X"V77), and og, = Fy[X/7]. (9)

Example 3.1. When E = Q) one takes m =p, ¢ = (1+ X)? — 1, then Fp(X,Y) =
(X 4+ 1)(Y +1) — 1 is the multplicative law and [a]y = (1 + X)* — 1 for a € Z,.
We obtain Fp = {¢ —1: (" =1} and E, = Qu(Cpn), and xg is the cyclotomic
character. (One can do almost the same thing for unramified extensions E/Qy).
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The perfectoid open unit disk. We define Dg := Spa(og[X], or[X]), and

Rp = (h%)loE[[Xﬂ)(Aﬂ,X) so that Spa(Rp, Rp) = Sy_r(r;) Spa(or[X], or[X]).
pa
(10)

Then ﬁE := Spa(RE, Rg), is an E-vector space objects in adic spaces. If D¢,
denotes the base-change of Dg from E to C,, then D¢, then by Lemma 2.3 one has

. 5010 = Spa(Rc,, Rc, ), is perfectoid and (5(;][,)b = Spa(R?gp, Rbcp)

In order to make the connection to the Fargues—Fontaine curve later, let us describe
this tilt a little more explicitly. The special fiber Spa(Rg, Re)s equals

nb-

lim Spa(F, [X], Fq[X]) = Spa(F, [x /"], F,[x"/77]), (11)
(e

or if you prefer Fq®oE Rg = F [X'/9]. We use this isomorphism in the second
line below:

Spa(oc; Br, Fe[X/17])

R

g

li
D)
im Spa(Rc, /@wRc,) = Spa(Rbcp).
)

Spa(ocs /@0, Bk, Fa X/ ])

<l

—~

(12)

I

—

In the first line we used that Fq[X v/ qm]] is perfect. In other words, passing to generic
fibers and deleting 0, we obtained an isomorphism

Spa(oc, Br,0p;_ )n \ {7 = @ = 0} = D). (13)

This isomorphism is equivariant for the action of oy (on the left from tilting the

Lubin—Tate character, and on the right from tilting the o} action). There is a minor

subtlety in matching up the Frobenius on og, with the action of 7 on the right
P

[Weil7, Lemma 4.0.9]. Conceptually, we’ve given a different presentation of the
diamond ng/EX.

4 The Fargues—Fontaine curve.

We recall the construction of the Fargues—Fontaine curve from Ken’s talk. Actually,

it can be constructed as the generic fiber of a formal scheme. We may define B>+ :=

Wo (0g» ) where the subscript og denotes ramified Witt vectors, equipped with the
P

usual (7, [w])-adic topology. Then B** is an og-algebra and, as is usual for Witt
vector constructions, is equipped with a Frobenius endomorphism coming from the
Frobenius on og, . We define

p

Ye = Spa(Bb’tBb’Jr)n \ {7T = [w} = 0} and Xp:= YE/‘PZ‘ (14)

We note that (Wo,(0ch ) Qo 0B, )/T = ch@pquw/ﬂ, so that by taking li_ng( ya
r P .
we obtain (Bb‘Jr@DE oEw)b = 0c» QF, 0y . Hence by Lemma 2.3 and the previous
P oo
section one has

(Ye®rEx)" = Spa(ocy ®r, 05 )y \ {7 = @ =0} 2D, (15)

via an oj-equivariant isomorphism. We will continue to ignore the minor subtlety
in matching up the ¢ and 7 actions. Hence we obtain an isomorphism

(DG /E™) 2 it (Xn). (16)
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4.1 The Fargues—Fontaine curve is geometrically simply
connected

Finally, we will prove that 7$'(Xg) 2 Gg. For this we recall the Dieudonné-Manin
classification of vector bundles on Xg. We let E := W, (F,)[1/n] denote the max-
imal unramified extension of E. Note that Yz lies over Spa(E) and the Frobenius
endomorphism ¢ of Yz lies over that of E, so we get Xp — Ev)/cpZA Therefore, we
can pull back vector bundles on E/pZ.

Vector bundles on E/¢? are called isocrystals. This is (by definition) the same
as a finite-dimensional E-vector space M equipped with the data of an isomorphism
om 2 "M = M. The pullback of (M, ) amounts to the g-equivariant vector
bundle (O ® 5 M, ¢ ® pnr) on Ye which we regard as a vector bundle £(M) on Xg.

The category of isocrystals is semisimple and there is a bijection A — M (X)
between (reduced) rationals and isomorphism classes of simples. For such we define
O(A) :== E(M(—A)). For example O(0) = Ox . Now we can state the classifcation
of vector bundles on the curve:

Theorem 4.1. e FEvery vector bundle £ on Xg is isomorphic to a vector bundle
of the form @)_, O(X\;) for a unique sequence of rational numbers Ay < --- <
An.
o If \i =d;/r; in reduced form then
O(A1) @ O(A2) = O(Ag + Ag)Pr172), (17)

o The global sections are

a Banach—Colmez space if A > 0,
H’(Xp,0(N) = { E, if A=0, (18)
0, if A <0.

Theorem 4.2. The Fargues—Fontaine curve is geometrically simply connected.

Proof. Let X := Xg and O := Ox. As observed at the beginning of the talk, it
suffices to show that every finite locally free O-algebra A with perfect trace pairing
A® A — O has trivial underlying vector bundle. Let us say that A = @, O(\;) for
A1 < -+ < A,. Because the vector bundle A is self-dual one has deg(A) = deg(AY) =

—deg(A), which reads ([[,7:)(>-, M) = —(I,7:)(>; M) and so > . A = 0. Let
A= Xs > 0. Assume (for a contradiction) that A > 0. The multiplication gives
A® A — A which restricts to O(A) ® O(A) — A which gives a global section

f € Hom(O(\) ® O(\), A) = H°(X, A® O(—2X))®", (19)

which must be zero because the latter has all negative slopes. We conclude that every

f € H(X,0(\) C H°(X, A) satisfies f? = 0. Because A is a finite étale O-algebra,

HY(X, A) is reduced we must then have H°(X,O()\)) = 0, so A < 0, contradiction.
So all A; = 0 and the underlying vector bundle of A is trivial. O

5 Explicit description of finite étale covers of 5*(;; JE*

The previous constructions depended on the field E. We will no longer suppress this
dependence in our notation, so let Zg := DE?CP/EX.

We will show that a finite extension E'/F of fields induces a “norm” morphism
of diamonds Ngr/g : Zg/ — Zg which fits into a commutative square

Tr(lét(ZE’) — 7T(1ét(ZE’)

I &

GE/ > Gg

4
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The following sketch can be found in the Berkeley notes. Let n = [E’ : E]. We note
that Dy, is a rigid p-divisible group of height n and dimension 1. By the work of
[Hed10] we may take its “nth exterior power” which is a rigid p-divisible group of
dimension 1 and height one, so isomorphic to @m,oé, and so we obtain an alternating

map A : D%, — am,oé,. If one chooses an og-basis ai,...,a, for o/ then we
may define Ng//g(x) := AMaaz,...,anr) which gives Ng//p : Dgic, = D,
after base change. By construction Ng/ g(ax) := Ng/yp(a)Ng//g(x) so we get

Ngi/g - f)E/,cp — ﬁEycp which is equivariant for the norm map E’ — E, so finally
we get Zpr — ZE.
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