Period morphism and tower

Arun Soor

9th February 2023

Abstract

These are notes for a learning seminar talk on moduli spaces of p-divisible groups given in February 2023.

Contents

T	RZ data of type EL	T
2	Period morphism	3
3	Tower	4

1 RZ data of type EL

We introduce a slightly different perspective for the moduli problem of type (E). Main reference for this section is [RV14]. Let F/\mathbb{Q}_p be finite, set $K_0 = \check{F}$ with Frobenius $\sigma \in \operatorname{Gal}(K_0/F)$, let *B* be a finite dimensional semisimple *F*-algebra with maximal order O_B , let *V* be a finite dimensional *B*-module. In this case the associated algebraic group is $G = \operatorname{GL}_B(V)$ viewed as a functor on \mathbb{Q}_p -algebras by

$$G(R) = \operatorname{GL}_{B \otimes_{\mathbb{Q}_p} R}(V \otimes_{\mathbb{Q}_p} R).$$
(1)

We let $b \in G(K_0)$ and let $\mu : \mathbb{G}_m \to G_{\overline{\mathbb{Q}}_p}$ be a cocharacter. Let $\Lambda \subseteq V$ be an O_B -stable lattice. This induces an integral model $\mathcal{G} = \operatorname{GL}_{O_B}(\Lambda)$ of G over \mathbb{Z}_p . We only consider b up to σ -conjugacy, i.e., $b \sim b'$ iff $b' = g^{-1}b\sigma(g)$ for some $g \in G(K_0)$, write [b] for its σ -conjugacy class. We view μ as defined up to $\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ -conjugacy and write $\{\mu\}$ for the class and $E = E_{\{\mu\}}$ for its field of definition. Then E/\mathbb{Q}_p is finite and called the *Shimura field*. Associated to $b \in B$ we also define the functor J_b :

$$J_b(R) = \{ g \in G(R \otimes_{\mathbb{Q}_p} K_0) : g(b\sigma) = (b\sigma)g \},$$

$$\tag{2}$$

it only depends on [b] up to isomorphism. Then

$$(F, B, O_B, V, [b], \{\mu\}, \Lambda) \tag{3}$$

is a simple integral RZ datum of type EL, if the following conditions are satisfied:

(i) The pair (b, μ) is admissible. This means that the filtered isocrystal $(V \otimes K_0, b \otimes \sigma, V_K^i)$ is admissible¹, i.e., belongs to the essential image of Fontaine's functor, i.e., there is a crystalline Galois representation U over \mathbb{Q}_p with $V \otimes K_0 \cong (U \otimes_{\mathbb{Q}_p} B_{\mathrm{cris}})^{\mathrm{G}_K}$ as filtered isocrystals, c.f. [RZ96, 1.6].

¹Here $K = K_0 E$ is finite over K_0 and the filtration on $V_K = V \otimes K$ is by the weights of μ .

- (ii) The isocrystal $(V \otimes K_0, b\sigma)$ has slopes in [0, 1].
- (iii) The weights of μ on V_K are only 0 and 1.

Note that $J_b(\mathbb{Q}_p)$ is the *B*-linear automorphisms of $(V \otimes K_0, b\sigma)$. We explain how this is related to the moduli problem of type (E) previously introduced. We take $F = \mathbb{Q}_p$. For $S \in \operatorname{Nilp}_{O_E}$, we consider pairs (X, ι) where $\iota : O_B \to \operatorname{End}(X)$ and the Kottwitz condition²:

$$\operatorname{char}(\iota(\beta); \operatorname{Lie}(X)) = \operatorname{char}(\beta; V_0), \text{ for all } \beta \in O_B,$$
(4)

where $V_0 \subseteq V \otimes \overline{\mathbb{Q}}_p$ is the weight 0 part for any $\mu \in {\{\mu\}}$; its isoclass as a *B*-module is defined over *E*.

The condition (ii) says that $(V \otimes K_0, b\sigma)$ is isomorphic to the isocrystal of some *p*divisible group over $\overline{\mathbb{F}}_p$. Fix $b \in [b]$. We choose a \mathbb{X} over $\overline{\mathbb{F}}_p$ such that its isocrystal³ $E(\mathbb{X})$ is *B*-equivariantly isomorphic to $(V \otimes K_0, b\sigma)$. \mathbb{X} is called the framing object. Then the functor

$$\mathcal{M} : \operatorname{Nilp}_{O_{\check{E}}} \to \operatorname{Sets} \\ S \mapsto \{ \operatorname{triples} (X, \iota, \varrho) \} / \cong,$$
(5)

where $\rho : \mathbb{X} \times_{\overline{\mathbb{F}}_p} \overline{S} \to X \times_S \overline{S}$ is an O_B -equivariant quasi-isogeny, is representable by a formal scheme $\check{\mathcal{M}}$ locally formally of finite type over $\operatorname{Spf}(O_{\check{E}})$. From the definitions, we have $J_b(\mathbb{Q}_p) = \operatorname{Aut}(E(\mathbb{X})) = \operatorname{Isog}(D(\mathbb{X}), D(\mathbb{X})) = \operatorname{Qisog}(\mathbb{X}, \mathbb{X})$. It follows that $g \in J_b(\mathbb{Q}_p)$ acts on $\check{\mathcal{M}}$ by

$$g: (X,\iota,\varrho) \mapsto (X,\iota,\varrho \circ g^{-1}).$$
(6)

A technical remark about when \mathcal{M} is nonempty. All the conditions (i)-(iii) are satisfied if there is a finite extension K/K_0 and a *p*-divisible group $\widetilde{\mathbb{X}}$ over the ring of integers O_K of K, whose reduction $\widetilde{\mathbb{X}}_{\overline{\mathbb{F}}_p}$ is equipped with a quasi-isogeny $\mathbb{X} \to \widetilde{\mathbb{X}}_{\overline{\mathbb{F}}_p}$ such that:

• The weight filtration from μ , and the Hodge filtration on $M^{\operatorname{rig}}(\widetilde{\mathbb{X}}) :=$ (the global sections of $M_{\widetilde{\mathbb{X}}}^{\operatorname{rig}}$ over $\operatorname{Spm}(O_K)$) coincide. Taking $\mathcal{M} = \operatorname{Spf}(O_K)$ in Proposition 2.1, the given quasi-isogeny induces an isomorphism $E(\mathbb{X}) \otimes K = V \otimes K \cong M^{\operatorname{rig}}(\widetilde{\mathbb{X}})$. Then the Hodge filtration

$$0 \to \operatorname{Fil}^{1} \to M^{\operatorname{rig}}(\widetilde{\mathbb{X}}) \to \operatorname{Lie}(\widetilde{\mathbb{X}}) \to 0 \tag{7}$$

and the weight filtration induced by the cocharacter μ

$$0 \to V_1 \to V \otimes K \to V/V_1 \to 0 \tag{8}$$

should agree.

²This is understood as an equality of polynomial functions in \mathcal{O}_S - since O_B preserves Λ , the right side here is a polynomial with coefficients in O_E and we compare it to the left side via the structure morphism, see [RV14, §4.2].

³We always work with covariant objects, i.e., $E(\mathbb{X})$ is the Lie algebra of the universal vector extension of \mathbb{X} .

Arun Soor

2 Period morphism

Reference for this section is [Wan09, §2.4] or [RZ96, Ch. 5]. Let S_0 be a scheme with p locally nilpotent. Recall that we defined the covariant Dieudonné functor

$$\mathbb{D}: \mathrm{BT}_{S_0} \to \left\{ \mathrm{Crystals \ in \ } \mathcal{O}_{S_{0,\mathrm{Cris}}} - \mathrm{modules \ locally \ free \ of \ finite \ rank} \right\}.$$
(9)

If $S_0 \hookrightarrow S$ is a nilpotent pd thickening then by Grothendieck-Messing theory, the functor

$$GM: BT_S \to \{admissible pairs (G_0, Fil^1 \hookrightarrow \mathbb{D}(G_0)_{(S_0 \hookrightarrow S)})\}$$

$$G \mapsto (G_0 = G|_{S_0}, V(G) \hookrightarrow \mathbb{D}(G_0)_{(S_0 \hookrightarrow S)})$$
(10)

is an equivalence of categories and compatible with base change in S. Recall that a pair is called admissible if Fil¹ is a locally direct summand which reduces to $V(G_0) \hookrightarrow \text{Lie}(E(G_0))$ on S_0 . Now (F, O, k, π) will be a complete DVR of characteristic (0, p) and k perfect. Let \mathcal{M} be a formal scheme locally formally of finite type over Spf(O). Such \mathcal{M} are π -adically complete. Let \mathcal{M}'_0 be the closed subscheme defined by $p\mathcal{O}_{\mathcal{M}}$. Then (9) can be used to define a functor

$$\mathbb{D}: \mathrm{BT}_{\mathcal{M}} \to \{\text{``admissible'' extensions of locally free finite rank } \mathcal{O}_{\mathcal{M}}\text{-modules}\}$$

$$X \mapsto (0 \to \mathrm{Fil}^1 \to M_X \to \mathrm{Lie}(X) \to 0).$$
(11)

moreover the formation of M_X is compatible with base change in X. Let \mathcal{M}'_n be the subscheme defined by $p^{n+1}\mathcal{O}_{\mathcal{M}}$. Then $\mathcal{M}'_0 \hookrightarrow \mathcal{M}'_n$ is a nilpotent pd-thickening, with respect to the canonical divided power structure $\gamma_m(p) = p^m/m!$ on $p^{n+1}\mathcal{O}_{\mathcal{M}}$. That is to say, $\mathcal{M}'_0 \hookrightarrow \mathcal{M}'_n$ is an object of $\operatorname{Cris}(\mathcal{M}'_0)$, and therefore by Grothendieck-Messing theory we obtain admissible filtrations

$$0 \to V(X_n) \to \mathbb{D}(X_0)_{(\mathcal{M}'_0 \hookrightarrow \mathcal{M}'_n)} \to \operatorname{Lie}(X_n) \to 0, \tag{12}$$

here $X_n = X_{\mathcal{M}'_n}$. By compatibility of Grothendieck-Messing theory with base change we have $V(X_{n+1}) \otimes_{\mathcal{O}_{\mathcal{M}'_{n+1}}} \mathcal{O}_{\mathcal{M}'_n} = V(X_n)$. In particular Mittag-Leffler criterion is satisfied and we obtain the desired exact sequence

$$0 \to \varprojlim V(X_n) \to \varprojlim \mathbb{D}(X_0)_{(\mathcal{M}'_0 \hookrightarrow \mathcal{M}'_n)} \to \varprojlim \operatorname{Lie}(X_n) \to 0,$$
(13)

which is usually written as

$$0 \to \operatorname{Fil}^1 \to M_X \to \operatorname{Lie}(X) \to 0. \tag{14}$$

If X is a *p*-divisible group over $\overline{\mathbb{F}}_p$ then $M_{\mathbb{X}}$ is just the usual covariant Dieudonné module $D(\mathbb{X})$ over $W(\overline{\mathbb{F}}_p)$, in particular $M_{\mathbb{X}}[p^{-1}] = E(\mathbb{X})$ is the isocrystal associated to X. Now let \mathcal{M}_0 be the k-scheme defined by an ideal of definition of \mathcal{M} containing π and let X be a fixed *p*-divisible group over k and with a fixed quasi-isogeny

$$\varrho: \mathbb{X}_{\mathcal{M}_0} \to X_{\mathcal{M}_0}. \tag{15}$$

Proposition 2.1. [RZ96, Proposition 5.15] The quasi-isogeny ϱ induces a canonical and functorial isomorphism of locally free $\mathcal{O}_{\mathcal{M}^{rig}}$ -modules of finite rank, compatible with base change,

$$\tilde{\varrho}: E(\mathbb{X}) \otimes_{W(k)[p^{-1}]} \mathcal{O}_{\mathcal{M}^{\mathrm{rig}}} \xrightarrow{\sim} M_X^{\mathrm{rig}}.$$
 (16)

Proof. Due to some technicality with the rigid generic fiber functor we first treat the case where \mathcal{M} is a topologically finitely presented (tfp) π -adic formal scheme. Let $\mathcal{M}_0, \mathcal{M}'_0$ be as above, then $\mathcal{M}_0 \subset \mathcal{M}'_0$ is a nilpotent immersion. By the rigidity of quasi-isogenies, ρ induces a unique quasi-isogeny of p-divisible groups over \mathcal{M}'_0 :

$$\varrho': \mathbb{X}_{\mathcal{M}'_0} \to X_{\mathcal{M}'_0}. \tag{17}$$

Since the construction of M as in (13) only depends on the special fiber (functorially), the quasi-isogeny ϱ' induces an isogeny

$$M_{\mathbb{X}_{\mathcal{M}'}} \to M_X.$$
 (18)

By the compatibility of Grothendieck-Messing theory with base change, this is identified with the isogeny $D(\mathbb{X}) \otimes_{W(k)} \mathcal{O}_{\mathcal{M}} \to M_X$ which becomes an isomorphism $E(\mathbb{X}) \otimes_{W(k)[p^{-1}]} \mathcal{O}_{\mathcal{M}^{\mathrm{rig}}} \xrightarrow{\sim} M_X^{\mathrm{rig}}$ after inverting p. For the general case of \mathcal{M} locally formally of finite type, we may assume that $\mathcal{M} = \mathrm{Spf}(A)$ is affine. Then $\mathcal{M}^{\mathrm{rig}} = \varinjlim \mathrm{Spm}(B_n \otimes F)$ for some π -adic B_n with $\mathrm{Spf}(A) = \varinjlim \mathrm{Spf}(B_n)$. So the desired isomorphism $\tilde{\varrho} : E(\mathbb{X}) \otimes \mathcal{O}_{\mathcal{M}^{\mathrm{rig}}} \to M_X^{\mathrm{rig}}$ is obtained as a limit of the just constructed maps

$$E(\mathbb{X}) \otimes \mathcal{O}_{\mathrm{Spm}(B_n \otimes F)} \to M_{X_n}^{\mathrm{rig}},\tag{19}$$

where X_n is the base change of X to $\text{Spf}(B_n)$.

We now return to the setting of §1. Let $(X^{\text{univ}}, \iota^{\text{univ}}, \varrho^{\text{univ}})$ be the universal *p*-divisible group over $\breve{\mathcal{M}}$. Then by Proposition 2.1, the middle term in

$$0 \to (\mathrm{Fil}^1)^{\mathrm{rig}} \to M_X^{\mathrm{rig}} \to \mathrm{Lie}(X^{\mathrm{univ}}) \to 0 \tag{20}$$

of vector bundles on $\breve{\mathcal{M}}$ becomes (using $\tilde{\varrho}^{\text{univ}}$):

$$0 \to (\operatorname{Fil}^{1})^{\operatorname{rig}} \to V \otimes_{\mathbb{Q}_{p}} \mathcal{O}_{\mathcal{M}^{\operatorname{rig}}} \to \operatorname{Lie}(X^{\operatorname{univ}}) \to 0$$
(21)

and hence determines a morphism $\breve{\pi} : \breve{\mathcal{M}} \to \operatorname{Gr}_{h-d}(V \otimes \breve{E})^{\operatorname{an}}$, the analytification of the Grassmannian parametrising h - d-dimensional planes in $V \otimes \breve{E}$. The period morphism $\breve{\pi}$ is étale, hence $\breve{M}^{\operatorname{rig}}$ is smooth over $\operatorname{Spm}(O_{\breve{E}})$ (c.f. [Wan09, Theorem 2.4.5] or [RZ96, Prop 5.17]).

3 Tower

We continue in this setting. Main reference for this section is [FM04, §2.3.9]. Recall that \mathcal{G} is the integral model of G with $\mathcal{G}(\mathbb{Z}_p) = \operatorname{GL}_{O_B}(\Lambda)$. The Tate module $T_p(X^{\operatorname{univ}})$ of X^{univ} defines a \mathbb{Z}_p -local system of rank $h = \operatorname{ht}(\mathbb{X})$ on $(\check{\mathcal{M}}^{\operatorname{rig}})_{\mathrm{\acute{e}t}}$ endowed with O_B -action, whose fiber $T_p(X^{\operatorname{univ}})$ over $x \in \check{\mathcal{M}}^{\operatorname{rig}}(\check{E})$ is isomorphic to Λ . Let $Y \to \check{\mathcal{M}}^{\operatorname{rig}}$ be a rigid analytic space. As a local system on Y with fiber Λ , we can associate to $T_p(X^{\operatorname{univ}})$ a cocycle c in $\check{Z}^1(Y, \mathcal{G}(\mathbb{Z}_p))$. A trivialisation modulo K of c is an element $\overline{\eta} \in \check{C}^0(Y, \mathcal{G}(\mathbb{Z}_p))/\check{C}^0(Y, K)$ such that $d\eta = c \pmod{K}$. For such a trivialisation we may choose a particular representative η and write

$$\eta: \Lambda \xrightarrow{\sim} T_p(X^{\text{univ}}) \ [K], \tag{22}$$

square brackets [K] emphasising the "modulo K". In this way the set of trivialisations of $T_p(X^{\text{univ}})$ modulo K defines a sheaf of finite sets on $(\mathcal{M}^{\text{rig}})_{\text{ét}}$ which is equivalent data to

Arun Soor

a finite étale covering $\check{\mathcal{M}}_K$ of $\check{\mathcal{M}}^{\mathrm{rig}}$. This gives a tower $(\check{\mathcal{M}}_K)_K$ of rigid analytic spaces over $\check{\mathcal{M}}^{\mathrm{rig}}$ with $K \subset K'$ inducing $\check{\mathcal{M}}_{K'} \to \check{\mathcal{M}}_K$, which is Galois with group K/K' if K'is normal in K. If $g \in G(\mathbb{Q}_p)$ is such that $g^{-1}Kg \subseteq \mathcal{G}(\mathbb{Z}_p)$ then (we will show) g induces an isomorphism $\check{\mathcal{M}}_K \xrightarrow{\sim} \check{\mathcal{M}}_{g^{-1}Kg}$ naturally in g and K. Thus $G(\mathbb{Q}_p)$ acts on the tower. The action of $J_b(\mathbb{Q}_p)$ on the base extends to a "horizontal" action on the $\check{\mathcal{M}}_K$, and we get a $G(\mathbb{Q}_p) \times J_b(\mathbb{Q}_p)$ -action on the tower.

We now describe isomorphism induced by g. We only do this on L-points for L/K_0 finite. A point $x \in \check{\mathcal{M}}_K(L)$ corresponds to some $((X, \varrho), \bar{\eta})$, where X is over $\operatorname{Spf}(O_L)$. Since (we are assuming) $g^{-1}Kg \subset \mathcal{G}(\mathbb{Z}_p)$, the lattice $g\Lambda$ is stable under K and $\eta(g\Lambda)$ is stable for the action of $\operatorname{Gal}(\overline{L}/L)$ on $T_p(X^{\operatorname{rig}})$. It follows [Tat67, Proposition 12] that $\eta(g\Lambda)$ induces a p-divisible group X' with a quasi-isogeny $f: X \to X'$ such that under the composite

$$\varphi: \Lambda \otimes \mathbb{Q}_p \xrightarrow{\cong \eta \otimes 1} V_p(X) \xrightarrow{\cong f_*} V_p(X'), \tag{23}$$

we have $\varphi^{-1}(T_p(X')) = g\Lambda$. Then we obtain ϱ' by composing ϱ with the special fiber of f. Finally $\overline{\eta}' := g^{-1} \circ \varphi^{-1}$ gives a trivialisation modulo $g^{-1}Kg$ of $T_p(X')$, i.e., we have constructed

$$\mathcal{M}_K(L) \to \mathcal{M}_{g^{-1}Kg}(L)$$

$$((X, \varrho), \overline{\eta}) \mapsto ((X', \varrho'), \overline{\eta}').$$
(24)

References

- [FM04] Laurent Fargues and Elena Mantovan. Variétés de Shimura, espaces de Rapoport-Zink et correspondances de Langlands locales. Number 291 in Astérisque. Société mathématique de France, 2004.
- [RV14] Michael Rapoport and Eva Viehmann. Towards a theory of local Shimura varieties. *Münster Journal of Mathematics*, 7(1):273–326, 2014.
- [RZ96] Michael Rapoport and Thomas Zink. Period Spaces for p-divisible Groups (AM-141), Volume 141. January 1996.
- [Tat67] J. T. Tate. p-divisible groups. In Proc. Conf. Local Fields (Driebergen, 1966), pages 158–183. Springer, Berlin, 1967.
- [Wan09] Haoran Wang. Moduli spaces of *p*-divisible groups and period morphisms. Master's thesis, Mathematisch Instituut Universiteit Leiden, 2009.