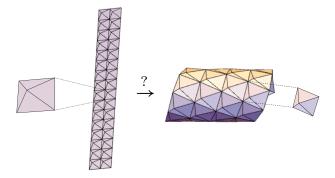
Origami with conformal and helical symmetry

Arun Soor¹ and Paul Plucinsky² and Fan Feng³ and Richard D. James⁴.

 ¹St John's College, University of Oxford
²Cavendish Laboratory, University of Cambridge
³Viterbi School of Engineering, University of Southern California
⁴Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis

April 18, 2022

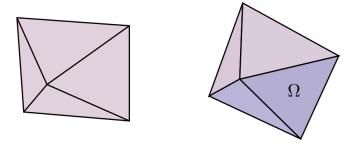
Background: we want to fold this tube from the **flat** crease pattern (left) - flat things are easier to fabricate, store, etc.



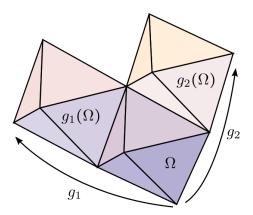
Question

Mathematically, what is the simplest way to rigidly deform the crease pattern into the folded tube?

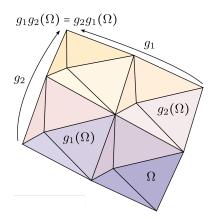
The idea: to design origami using groups.



Take a flat unit cell (parallelogram on the left), and fold it slightly (folded tile Ω on the right).



Find a pair of **commuting screw isometries** g_1 , g_2 mapping opposite edges.



The commutativity assumption ensures that the fourth cell fits - **local compatibility**.

Applying some powers of g_1 , g_2 gives a **locally compatible** structure.

There is an implicit dependence on the **folding angle** ω of the unit cell. Increasing ω , the resulting structure will close.

The closed structure corresponds to a relation:

$$g_1^p g_2^q = 1, \quad ext{ for some } p,q \in \mathbb{Z}.$$

- the discreteness condition.

Helical groups

We use the notation (A|b) for the map $x \mapsto Ax + b$. Explicitly, these groups are generated by g_1, g_2 of the form

$$g_i = (R_{\theta_i}|(I-R_{\theta_i})z+\tau_i e), \quad i=1,2,$$

where the R_{θ_i} have axis e, and the discreteness condition reduces to:

$$\begin{aligned} p\theta_1 + q\theta_2 &= 2\pi, \\ p\tau_1 + q\tau_2 &= 0, \end{aligned}$$

for some $p, q \in \mathbb{Z}$.

Goal

Can we generalise this approach to groups of non-isometries?

Conformal euclidean groups

We look at the **conformal Euclidean groups**: elements are transformations of \mathbb{R}^N of the form

$$(\lambda Q|c), \quad \lambda \in \mathbb{R}, \ Q \in O(N), \ c \in \mathbb{R}^N.$$

and containing some element with $\lambda \neq 1$.

Question

Which such groups G satisfy the semi-discreteness condition

$$\inf_{\substack{x_1,x_2\in (Gx)'\\x_1\neq x_2}} |x_1-x_2|>0,$$

for all $x \in \mathbb{R}^{N}$? i.e., accumulation points are spaced.

Conformal euclidean groups

Theorem

The conformal Euclidean groups satisfying the semi-discreteness condition are precisely those of the form

$$\{\tau g_0^k h \tau^{-1} : k \in \mathbb{Z}, h \in H\}$$

where:

•
$$g_0 = (\lambda Q|0)$$
 for any $\lambda \neq 1$, $Q \in O(N)$;

•
$$H \subseteq O(N)$$
 is a point group;

•
$$\tau = (I|s)$$
 is a translation by $s \in \mathbb{R}^N$.

Conformal euclidean groups

For applications, we want to consider groups acting on \mathbb{R}^3 , generated by a pair of commuting generators g_1, g_2 . By taking H to be an abelian point group, these are:

- 1. Accumulating rays.
- 2. Accumulating lines by reflection.
- 3. Accumulating lines by mirroring.
- 4. Accumulating pyramids.
- 5. Accumulating saddles.

6. Spiral groups.

Cases 1-5 are a little "degenerate" (they arise because groups of order \leq 4 are abelian).

The most interesting is 6 - the spiral groups.

Spiral groups

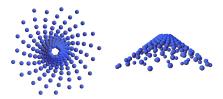
The spiral groups are generated by a commuting pair g_1, g_2 , given by:

$$g_i = (\lambda_i R_{\theta_i} | (I - \lambda_i R_{\theta_i}) s), \quad i = 1, 2,$$

where the R_{θ_i} are coaxial rotations, satisfying the semi-discreteness condition:

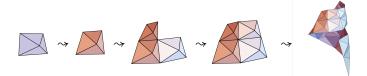
$$p heta_1+q heta_2=2\pi, \ p\log(\lambda_1)+q\log(\lambda_2)=0,$$

for some $p, q \in \mathbb{Z}$.

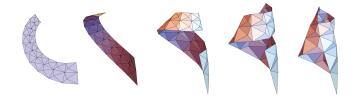


Conformal miura-ori

Using this abelian group generated by g_1 , g_2 , the same approach works:

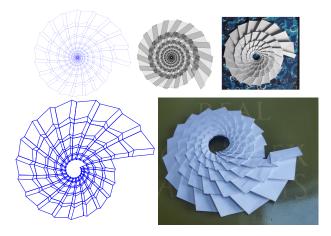


Just as before, increase the folding angle until the semi-discreteness conditions are satisfied:

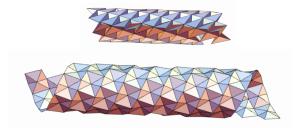


Another use of conformal groups

Another application: The 2-d groups can be used to make flat-foldable origami (interesting to enthusiasts). The construction is similar to the quad-mesh origami (but unfortunately, not rigidly foldable).



Suppose that we want to generalise the construction of waterbomb origami: useful because they exhibit **bistability**.

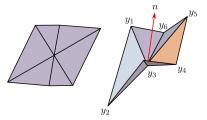


This gives applications, e.g. in medical stents (P. Velvaluri, A. Soor, P. Plucinsky, R. D. James, R. Lima de Miranda, E. Quandt "Origami-inspired thin-film shape memory alloy devices" (2021)).

Problem

The forwards approach is intractable (many DOF).

The unit cell is a "generalised waterbomb cell", with 180° symmetry about axis *n*, folded symmetrically.



We want compatibility under an abelian helical group generated by g_1, g_2 , which amounts to:

$$g_1(y_2) = y_6, \quad g_1(y_3) = y_5$$

 $g_2(y_3) = y_1, \quad g_2(y_4) = y_6$

(Commutativity ensures the last pair of edges are compatible under $g_2^{-1}g_1$).

Recall that

$$g_i = (R_{ heta_i}|(I-R_{ heta_i})z+ au_ie) \quad i=1,2.$$

If we make the (mild) assumption that $z \parallel n$, then the local compatibility conditions imply that:

$$|P_e(y_1-z)| = |P_e(y_2-z)| = \cdots = |P_e(y_6-z)|.$$

i.e. the six vertices all lie on a cylinder.

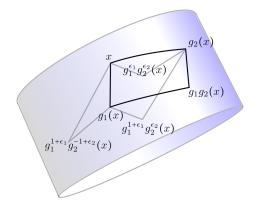
Idea

Inverse approach: To make a **closed tube**, choose 6 vertices on the cylinder, compatibly with a **discrete** helical group, and try to "unfold" the resulting structure.

To choose the vertices, we **continuously extend** the generators g_1, g_2 of a discrete helical group. For $t \in \mathbb{R}$, define:

$$g_i^t := (R_{t\theta_i}|(I-R_{t\theta_i})z+t\tau_i e), \quad i=1,2,$$

then, choosing $\epsilon_1, \epsilon_2 \in \mathbb{R}$ appropriately, prescribe vertices as:



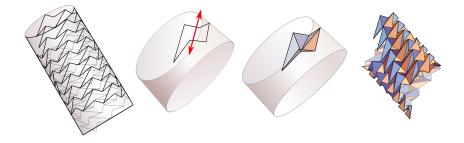
The hexagon tesselates around the cylinder. It has 180° symmetry about an axis *n*. Choose the central vertex y_0 along the axis, i.e.

$$y_0 = \frac{1}{2}(y_1 + y_4) + \mu n$$

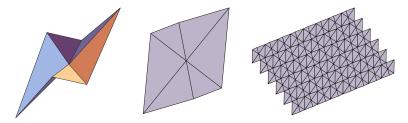
for some $\mu \in \mathbb{R}$, such that:

$$\angle y_6 y_0 y_5 + \angle y_5 y_0 y_4 + \angle y_4 y_0 y_3 = \pi.$$

This ensures that the cell can be unfolded. Easy numerically: the LHS is a simple function of μ .

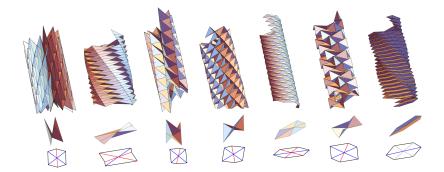


The 180° rotational symmetry is preserved under unfolding. Any hexagon with 180° rotational symmetry can be tessellated: so compatibility in the flat state is automatic.



 \rightsquigarrow we get a flat tessellation which folds to give the closed tube we designed.

Choosing different parameters leads to many interesting tubes.

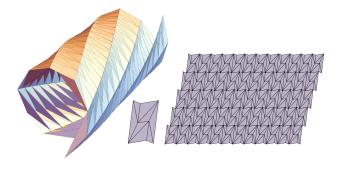


Conformal origami and inverse approach

A similar approach also works for the conformal Euclidean groups: here we choose points on a **cone** rather than a cylinder.

What could you do with these groups?

No reason to restrict to "classical" (e.g. miura-ori, or waterbomb as I have here), for instance: a strange unit cell with two degree-5 vertices.



Thanks!

arun.soor@sjc.ox.ac.uk