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Helical miura-ori (F. Feng, P. Plucinsky, R.D James
(2019)).

Background: we want to fold this tube from the flat crease
pattern (left) - flat things are easier to fabricate, store, etc.

Question

Mathematically, what is the simplest way to rigidly deform the
crease pattern into the folded tube?



Helical miura-ori (F. Feng, P. Plucinsky, R.D James
(2019)).

The idea: to design origami using groups.

Take a flat unit cell (parallelogram on the left), and fold it slightly
(folded tile Ω on the right).



Helical miura-ori (F. Feng, P. Plucinsky, R.D James
(2019)).

Find a pair of commuting screw isometries g1, g2 mapping
opposite edges.



Helical miura-ori (F. Feng, P. Plucinsky, R.D James
(2019)).

The commutativity assumption ensures that the fourth cell fits -
local compatibility.



Helical miura-ori (F. Feng, P. Plucinsky, R.D James
(2019)).

Applying some powers of g1, g2 gives a locally compatible
structure.



Helical miura-ori (F. Feng, P. Plucinsky, R.D James
(2019)).

There is an implicit dependence on the folding angle ω of the unit
cell. Increasing ω, the resulting structure will close.

The closed structure corresponds to a relation:
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2 = 1, for some p, q ∈ Z.

- the discreteness condition.



Helical groups

We use the notation (A|b) for the map x 7→ Ax + b. Explicitly,
these groups are generated by g1, g2 of the form

gi = (Rθi |(I − Rθi )z + τie), i = 1, 2,

where the Rθi have axis e, and the discreteness condition reduces
to:

pθ1 + qθ2 = 2π,

pτ1 + qτ2 = 0,

for some p, q ∈ Z.

Goal

Can we generalise this approach to groups of non-isometries?



Conformal euclidean groups

We look at the conformal Euclidean groups: elements are
transformations of RN of the form

(λQ|c), λ ∈ R, Q ∈ O(N), c ∈ RN .

and containing some element with λ 6= 1.

Question

Which such groups G satisfy the semi-discreteness condition

inf
x1,x2∈(Gx)′

x1 6=x2

|x1 − x2| > 0,

for all x ∈ RN? i.e., accumulation points are spaced.



Conformal euclidean groups

Theorem

The conformal Euclidean groups satisfying the semi-discreteness
condition are precisely those of the form

{τgk
0 hτ

−1 : k ∈ Z, h ∈ H}

where:

I g0 = (λQ|0) for any λ 6= 1, Q ∈ O(N);

I H ⊆ O(N) is a point group;

I τ = (I |s) is a translation by s ∈ RN .



Conformal euclidean groups

For applications, we want to consider groups acting on R3,
generated by a pair of commuting generators g1, g2. By taking H
to be an abelian point group, these are:

1. Accumulating rays.

2. Accumulating lines by reflection.

3. Accumulating lines by mirroring.

4. Accumulating pyramids.

5. Accumulating saddles.

6. Spiral groups.

Cases 1-5 are a little “degenerate” (they arise because groups of
order ≤ 4 are abelian).
The most interesting is 6 - the spiral groups.



Spiral groups

The spiral groups are generated by a commuting pair g1, g2, given
by:

gi = (λiRθi |(I − λiRθi )s), i = 1, 2,

where the Rθi are coaxial rotations, satisfying the semi-discreteness
condition:

pθ1 + qθ2 = 2π,

p log(λ1) + q log(λ2) = 0,

for some p, q ∈ Z.



Conformal miura-ori

Using this abelian group generated by g1, g2, the same approach
works:

Just as before, increase the folding angle until the
semi-discreteness conditions are satisfied:



Another use of conformal groups

Another application: The 2-d groups can be used to make
flat-foldable origami (interesting to enthusiasts).
The construction is similar to the quad-mesh origami (but
unfortunately, not rigidly foldable).



Waterbomb origami and inverse approach
Suppose that we want to generalise the construction of waterbomb
origami: useful because they exhibit bistability.

This gives applications, e.g. in medical stents (P. Velvaluri, A.
Soor, P. Plucinsky, R. D. James, R. Lima de Miranda, E. Quandt
“Origami-inspired thin-film shape memory alloy devices” (2021)).

Problem

The forwards approach is intractable (many DOF).



Waterbomb origami and inverse approach
The unit cell is a “generalised waterbomb cell”, with 180◦

symmetry about axis n, folded symmetrically.

We want compatibility under an abelian helical group generated by
g1, g2, which amounts to:

g1(y2) = y6, g1(y3) = y5

g2(y3) = y1, g2(y4) = y6

(Commutativity ensures the last pair of edges are compatible under
g−12 g1).



Waterbomb origami and inverse approach

Recall that

gi = (Rθi |(I − Rθi )z + τie) i = 1, 2.

If we make the (mild) assumption that z‖n, then the local
compatibility conditions imply that:

|Pe(y1 − z)| = |Pe(y2 − z)| = · · · = |Pe(y6 − z)|.

i.e. the six vertices all lie on a cylinder.

Idea

Inverse approach: To make a closed tube, choose 6 vertices on
the cylinder, compatibly with a discrete helical group, and try to
“unfold” the resulting structure.



Waterbomb origami and inverse approach
To choose the vertices, we continuously extend the generators
g1, g2 of a discrete helical group. For t ∈ R, define:

g t
i := (Rtθi |(I − Rtθi )z + tτie), i = 1, 2,

then, choosing ε1, ε2 ∈ R appropriately, prescribe vertices as:



Waterbomb origami and inverse approach
The hexagon tesselates around the cylinder. It has 180◦ symmetry
about an axis n. Choose the central vertex y0 along the axis, i.e.

y0 =
1

2
(y1 + y4) + µn

for some µ ∈ R, such that:

∠y6y0y5 + ∠y5y0y4 + ∠y4y0y3 = π.

This ensures that the cell can be unfolded. Easy numerically: the
LHS is a simple function of µ.



Waterbomb origami and inverse approach

The 180◦ rotational symmetry is preserved under unfolding. Any
hexagon with 180◦ rotational symmetry can be tessellated: so
compatibility in the flat state is automatic.

 we get a flat tessellation which folds to give the closed tube we
designed.



Waterbomb origami and inverse approach

Choosing different parameters leads to many interesting tubes.



Conformal origami and inverse approach

A similar approach also works for the conformal Euclidean groups:
here we choose points on a cone rather than a cylinder.



What could you do with these groups?

No reason to restrict to “classical” (e.g. miura-ori, or waterbomb
as I have here), for instance: a strange unit cell with two degree-5
vertices.



Thanks!

arun.soor@sjc.ox.ac.uk


