Some perspectives on differential operators in algebraic geometry

Arun Soor

May 11, 2023

Abstract

These are notes for a study group on Geometric Langlands in Oxford in May 2023.

Contents

1	Introduction	1
2		2 2 2
3	Crystals 3.1 \mathcal{D} -schemes, jets, conformal blocks	3

1 Introduction

Let M/\mathbb{C} be a complex manifold and let $E \to M$ be a rank n vector bundle. A connection on M is a \mathbb{C} -linear map $\Gamma(E) \to \Gamma(T^*M \otimes E)$ satisfying the Leibniz rule $\nabla(fs) = df \otimes s + f\nabla(s)$, for all $f \in \Gamma(M), s \in \Gamma(E)$. By evaluating ∇ at vector fields ∂ , it can equivalently be viewed as a map $\Gamma(TM) \to \operatorname{End}(E) : \partial \mapsto \nabla_{\partial}$.

Given $x,y\in M$, let γ be a smooth path with $\gamma(0)=x,\gamma(1)=y$, then $\dot{\gamma}$ is a vector field along γ . Let $e_x\in E_x$, then by the existence of solutions to linear ODEs with given initial conditions (Picard-Lindelöf theorem), there exists a unique section s of E along γ such that $\nabla_{\dot{\gamma}}s=0$ and $s(0)=e_x$. Set $e_y=s(1)$, then by considering the reversed path we have determined an isomorphism $\Gamma(\gamma)_x^y:E_x\xrightarrow{\sim} E_y$ which, if ∇ is flat , can be shown to depend only on the path homotopy class of γ . This is known as parallel transport along γ . In particular the connection has given us a canonical identification of "nearby" fibers of E, basically since $M\cong \mathbb{C}^{\dim M}$ locally, which is simply-connected.

In this talk we will present a generalisation of vector bundles with flat connection (\mathcal{D} -modules), and an algebraic incarnation of "identifying nearby fibers" (crystals), and relate them.

2 \mathcal{D} -modules

Let X/\mathbb{C} be a smooth scheme and let $\mathcal{D}_X \subset \mathcal{H}om_{\mathbb{C}}(\mathcal{O}_X, \mathcal{O}_X)$ be the subsheaf of algebras generated by \mathcal{O}_X and $\mathcal{T}_X = \mathcal{D}er_{\mathbb{C}}(\mathcal{O}_X, \mathcal{O}_X)$. A \mathcal{D}_X -module is a \mathcal{D}_X -module object $M \in \mathrm{QCoh}(X)$, extending the \mathcal{O}_X -module structure. This is the same a giving a connection $\nabla: M \to M \otimes_{\mathcal{O}_X} \Omega^1_{X/\mathbb{C}}$ which is flat, i.e. $\nabla \wedge \nabla: M \to M \otimes_{\mathcal{O}_X} \Omega^2_{X/\mathbb{C}}$. Therefore \mathcal{D}_X -modules generalise vector bundles with connection by removing the finite locally free hypothesis.

2.1 Differential operators

For $M, N \in QCoh(X)$ recursively define $\mathcal{D}iff^0(M, N) := \mathcal{H}om_{\mathcal{O}_X}(M, N)$ and

$$\mathcal{D}iff^{n+1}(M,N) := \{ D \in \mathcal{H}om_{\mathbb{C}}(M,N) : fD - Df \in \mathcal{D}iff^{n}(M,N) \text{ for all } f \in \mathcal{O}_{X} \},$$
(1

and set $\mathcal{D}iff(M,N) := \bigcup_{n\geq 0} \mathcal{D}iff^n(M,N)$. For example $\mathcal{D}_X = \mathcal{D}iff(\mathcal{O}_X,\mathcal{O}_X)$. It is clear that $\mathcal{D}iff(M,N)$ is filtered, and in fact if M,N are locally free then $\operatorname{gr} \mathcal{D}iff(M,N) \cong \operatorname{Hom}_{\mathcal{O}_X}(M,N) \otimes_{\mathcal{O}_X} \operatorname{Sym}^{\bullet} \mathcal{T}_X$. Thus if \mathcal{L} is a line bundle then $\mathcal{D}_X(\mathcal{L},\mathcal{L}) := \mathcal{D}iff(\mathcal{L},\mathcal{L}) \cong \operatorname{Sym}^{\bullet} \mathcal{T}_X$ and this is in fact an isomorphism of Poisson algebras² (recall that for any filtered graded-commutative ring \mathcal{D} , $\operatorname{gr} \mathcal{D}$ has the canonical structure of a Poisson algebra).

Definition 2.1. [Gin98, Definition 2.2.1] A TDO is a positively filtered sheaf \mathcal{D} of \mathbb{C} -algebras together with an isomorphism gr $\mathcal{D} \cong \operatorname{Sym}^{\bullet} \mathcal{T}_{X}$ of Poisson algebras.

The category $\mathsf{Mod}_{\mathcal{D}_X}$ is abelian and closed symmetric monoidal with respect to $\otimes_{\mathcal{O}_X}$, $\mathcal{H}om_{\mathcal{O}_X}(-,-)$. Unfortunately, given a smooth morphism $f:X\to Y$ of smooth schemes there is no obvious morphism of ringed spaces $(X,\mathcal{D}_X)\to (Y,\mathcal{D}_Y)$ extending this. This makes push/pull of \mathcal{D} -modules difficult to define. In fact, f_* only exists at the derived level. The next section is intended to give a more intuitive description of these functors.

2.2 DG-modules over the de Rham complex

The main reference for this section is [Kap91], see also [BD, §7.2, 7.3]. The content of this section (\mathcal{D} - Ω duality) can be seen as an instance of Koszul duality [Pos11, Appendix B].

Let X/\mathbb{C} be a smooth quasi-projective variety. Recall that a DG-algebra is a graded algebra A with degree 1 differential d satisfying $d \circ d = 0$ and the graded Leibnitz rule $d(ab) = (da) \cdot b + (-1)^{\deg a} a \cdot (db)$ (for homogeneous a, b), i.e., a monoid object in chain complexes. For example the de Rham complex Ω_X^{\bullet} is a sheaf of DG-algebras on X_{Zar} , we define an Ω_X^{\bullet} -module as a module object for this in $\operatorname{Ch}(\operatorname{QCoh}(X))$. A morphism of such is just an \mathcal{O}_X -linear map of complexes and we denote the category of such by $\mathcal{M}_{qc}(\Omega_X^{\bullet})$. This is nothing but the full subcategory of $M^{\bullet} \in \operatorname{Ch}(\operatorname{QCoh}(X))$ where we require $d \in \operatorname{Dif} f^1(M^i, M^{i+1})$ for all i.

We can also consider graded left modules (without differential) over the graded algebra Ω_X^{\bullet} , which we call $\Omega_X^{\#}$ -modules.

 $\mathcal{M}_{c}^{b}(\Omega_{X}^{\bullet})$ shall denote the category of Ω_{X}^{\bullet} -modules M^{\bullet} , such that M^{\bullet} is a bounded complex of coherent \mathcal{O}_{X} -modules.

If $s: M^{\bullet} \to N^{\bullet}[1]$ is a morphism of $\Omega_X^{\#}$ -modules then $f = d_N s + s d_M$ is a morphism of Ω_X^{\bullet} -modules which we call "homotopic to 0" and we form the homotopy category $\mathbf{K}_c^b(\Omega_X^{\bullet})$

¹The first condition just says that \mathcal{T}_X acts by derivations and the flatness says that the components of \mathcal{T}_X commute with each other.

 $^{^2\}mathrm{A}$ Poisson algebra is a commutative algebra with Lie bracket $\{\cdot,\cdot\}$ which is a bi-derivation.

as a quotient of $\mathcal{M}_c^b(\Omega_X^{\bullet})$. A map $f: M^{\bullet} \to N^{\bullet}$ in $\mathcal{M}_c^b(\Omega_X^{\bullet})$ is called a quasi-isomorphism if $f_{\mathrm{an}}: M_{\mathrm{an}}^{\bullet} \to N_{\mathrm{an}}^{\bullet}$ is a quasi-isomorphism of complexes of sheaves on X_{an} ; localising, we form $D_c^b(\Omega_X^{\bullet})$. Given $M^{\bullet} \in \mathcal{M}(\Omega_X^{\bullet})$ consider the complex

$$DR^{-1}(M^{\bullet}) := \left[\cdots \to M^0 \otimes_{\mathcal{O}_X} \mathcal{D}_X \xrightarrow{\delta} M^1 \otimes_{\mathcal{O}_X} \mathcal{D}_X \to \cdots \right]$$
 (2)

where δ is defined by

$$M^{i} \otimes_{\mathcal{O}_{X}} \mathcal{D}_{X} \xrightarrow{\delta} M^{i+1} \otimes_{\mathcal{O}_{X}} \mathcal{D}_{X}$$

$$\stackrel{\cong}{|} \cong \qquad \qquad \stackrel{\cong}{|} \cong$$

$$\mathcal{D}iff(\mathcal{O}_{X}, M^{i}) \xrightarrow{d_{M} \circ -} \mathcal{D}iff(\mathcal{O}_{X}, M^{i+1})$$

$$(3)$$

This extends to an exact functor $\widetilde{DR}^{-1}: D^b_c(\Omega_X^{\bullet}) \to D^b_c(\mathcal{D}_X)$. We define also the functor $\widetilde{DR}: D^b_c(\mathcal{D}_X) \to D^b_c(\Omega_X^{\bullet}): N^{\bullet} \mapsto N^{\bullet} \otimes_{\mathcal{D}_X}^{\mathbb{L}} \mathcal{O}_X$, it is well-defined by the existence of the Spencer resolution.

Theorem 2.2. [Kap91, Theorem 1.4], [Sai89, Proposition 1.2] The functors \widetilde{DR}^{-1} , \widetilde{DR} are mutual quasi-inverses giving an equivalence of categories $D_c^b(\Omega_X^{\bullet}) \cong D_c^b(\mathcal{D}_X)$.

Thus $D_c^b(\Omega_X^{\bullet})$ is a "direct" definition of $D_c^b(\mathcal{D}_X)$. For a smooth morphism $f: X \to Y$ of smooth varieties over $\mathbb C$ put f_*, f^{-1} for the sheaf-theoretic direct/inverse images, then f induces a morphism of DG-ringed spaces $(X, \Omega_X^{\bullet}) \to (Y, \Omega_Y^{\bullet})$, i.e, we have a DG-algebra map $\Omega_Y^{\bullet} \to f_*\Omega_X^{\bullet}$, equivalently $f^{-1}\Omega_Y^{\bullet} \to \Omega_X^{\bullet}$. Thus we can define push/pull on $\mathcal{M}_{qc}(\Omega^{\bullet})$ in the usual way, i.e., $f_{\Omega,*}M^{\bullet}:=f_*M^{\bullet}$ with the action given by restriction along $\Omega_Y^{\bullet} \to f_*\Omega_X^{\bullet}$, and $f_{\Omega}^*N^{\bullet}:=\Omega_X^{\bullet}\otimes_{f^{-1}\Omega_Y^{\bullet}}f^{-1}N^{\bullet}$, for $M^{\bullet}\in\mathcal{M}_{qc}(\Omega_X^{\bullet}), N^{\bullet}\in\mathcal{M}_{qc}(\Omega_Y^{\bullet})$. The pushforward $f_{\Omega,*}$ has to be "derived" to get a functor $Rf_{\Omega,*}:D_c^b(\Omega_X^{\bullet}) \to D_c^b(\Omega_Y^{\bullet})$. By using Theorem 2.2 one can recover the usual formulas for push/pull of \mathcal{D} -modules.

The analogue of Theorem 2.2 for $D_{qc}^{?}(\mathcal{D}_X)$, $? \in \{\emptyset, +, -, b\}$ is more subtle to define. Just as above, we are always able to define an adjoint pair of functors

$$\widetilde{DR}^{-1} : \mathbf{K}_{ac}^{?}(\Omega_{X}^{\bullet}) \leftrightarrows \mathbf{K}_{ac}^{?}(\mathcal{D}_{X}) : \widetilde{DR}$$
 (4)

however we must be careful about which quasi-isomorphisms to invert on the left, c.f. [BD04, §2.1.10]. One defines a \mathcal{D} -quasi-isomorphism as those ψ where $\widetilde{DR}^{-1}(\psi)$ is a quasi-isomorphism in $\mathbf{K}_{qc}^{?}(\mathcal{D}_{X})$ and $D_{qc}^{?}(\Omega_{X}^{\bullet})$ is the localisation at these, then we get the equivalence $D_{qc}^{?}(\Omega_{X}^{\bullet}) \cong D_{qc}^{?}(\mathcal{D}_{X})$.

3 Crystals

As mentioned, crystals are supposed to be an algebraic incarnation of "identifying nearby fibers". The main reference for this section is [Lur09].

Let X/k be any separated scheme over any field k of characteristic 0 (not necessarily smooth), which we may view as a functor on commutative k-algebras R. For a quasi-coherent sheaf M on X and $x \in X(R)$ we have the pullback $x^*M \in \mathsf{Mod}_R$. We say $x, y \in X(R)$ are infinitesimally close if they agree in the image of $X(R) \to X(R^{\mathrm{red}})$. Then a crystal in quasi-coherent sheaves is such an M, together with the data of isomorphisms $\alpha_{x,y}: x^*M \to y^*M$ for every pair $x, y \in X(R)$ of infinitesimally close points, compatible

with base change in R and satisfying a cocycle condition (coming from the transitivity of the relation of being "infinitesimally close").

If one defines the functor $X_{dR}(R) := X(R^{red})$ then this is the same as the data of a quasi-coherent sheaf on X_{dR} , where for an arbitrary functor $\mathsf{CommAlg}_k \to \mathsf{Set}$ a quasicoherent sheaf on it is defined as in [Lur09]. We think of $X(R) \to X_{\mathrm{dR}}(R)$ as giving $X_{\rm dR}(R)$ the structure of a groupoid (where we have divided by the relation of being infinitesimally close), the "infinitesimal groupoid". If X is smooth then X_{dR} is a sheaf on $\operatorname{\mathsf{Sch}}^{\mathsf{op}}_{/k}$ and accordingly is called the de Rham stack.

Consider (c.f. [Gro68, Appendix]) the diagram

$$(\widehat{X \times X \times X})_{\Delta} \xrightarrow{\stackrel{p_{12}}{-p_{23}}} (\widehat{X \times X})_{\Delta} \xrightarrow{\stackrel{p_1}{-p_2}} X \tag{5}$$

where $(X \times X)_{\Lambda}$, etc, is the formal completion along the diagonal, p_{12}, p_1 , etc, are the projections³. We claim that a crystal is the same as the data (M, φ) where $M \in QCoh(X)$ and $\varphi: p_1^*M \xrightarrow{\sim} p_2^*M$ is an isomorphism which restricts to id on the diagonal and satisfies the cocycle condition $p_{23}^*(\varphi) \circ p_{12}^*(\varphi) = p_{13}^*(\varphi)$: morally speaking, X_{dR} is the coequaliser of the diagram (5).

For, to say that $x, y : \operatorname{Spec}(R) \to X$ are infinitesimally close is the same as saying that $(x,y): \operatorname{Spec}(R^{\operatorname{red}}) \to X \times X$ factors through the diagonal, i.e., $(x,y)^* \mathcal{J} \subset \operatorname{nilrad}(R)$, where \mathcal{J} is the ideal defining the diagonal; so⁴

$$(x,y)^* \mathcal{J}^{n+1} = 0 \text{ for some } n \ge 0.$$
 (6)

As a formal scheme, $(X \times X)_{\Delta}$ is just a particular kind of ind-scheme⁵, and so $(X \times X)_{\Delta}(R) =$ $\lim_{n} (X \times X)^{n}_{\Delta}(R)$, one then notes that (6) says exactly that $(x,y) \in (X \times X)^{n}_{\Delta}(R)$. Thus we have shown that $(X \times X)_{\Delta}$ is universal for pairs of infinitesimally close morphisms (x,y), hence to give all the data of a crystal it is sufficient to give $M \in QCoh(X)$ with an isomorphism $\varphi: p_1^*M \xrightarrow{\sim} p_2^*M$ satisfying the cocycle condition.

If X is smooth this is the same as a \mathcal{D}_X -module. For, by the usual adjunction φ translates to a map

$$\tilde{\varphi}: M \to p_{1,*} p_2^* M = \varprojlim_n \mathcal{O}_{X \times X} / \mathcal{J}^{n+1} \otimes_{\mathcal{O}_X} M \tag{7}$$

since X is smooth we can take étale coordinates $\{x_i\}$ locally and identify \mathcal{D}_X with the restricted (filtered) \mathcal{O}_X -dual of $\varprojlim_n \mathcal{O}_{X\times X}/\mathcal{J}^{n+1}$ by the pairing $\langle \partial^{\alpha}, \frac{1}{\beta!} (x'-x'')^{\beta} \rangle = \delta_{\alpha\beta}$ (extended bilinearly). Therefore the "coaction" (7) can be transposed to an action $\tilde{\varphi}^t$: $\mathcal{D}_X \otimes_{\mathcal{O}_X} M \to M$; that this extends the \mathcal{O}_X action and is associative, is equivalent to $\varphi|_{\Delta} = id$ and the cocycle condition.

\mathcal{D} -schemes, jets, conformal blocks

The main references for this section are [Neg09, Lur09]. We can define crystals valued in all sorts of objects. For example if S/k is a smooth scheme then we define a crystal

³This makes the pair $(X, (X \times X)_{\Delta})$ into a formal groupoid in the sense of Simpson [Sim97, §7], who then defines X_{dR} as the stack associated to this formal groupoid; he then shows that if X is smooth then $X_{\mathrm{dR}}(R) = X(R^{\mathrm{red}})$. Here we are starting the other way round. ⁴For simplicity assume R is Noetherian...

⁵i.e., just the ones whose reduction is actually a scheme.

of schemes over S as an S-scheme $Z \xrightarrow{\pi} S$, with the following additional data: for each $R \in \mathsf{CommAlg}_k$ and each pair of infinitesimally close morphisms $x, y \in S(R)$ an isomorphism $x^*Z \xrightarrow{\sim} y^*Z$, compatible with base change in R and satisfying a cocycle condition. Here $x^*Z := Z \times_{S,x} \mathrm{Spec}(R)$.

In a manner analogous to previous, there is a relation to \mathcal{D}_S -modules, namely a canonical equivalence

$$\mathsf{CommMon}(\mathsf{Mod}_{\mathcal{D}_S})^{\mathsf{op}} \cong \{ \text{crystals of } S \text{-schemes } \pi : Z \to S \text{ with } \pi \text{ affine} \}, \tag{8}$$

objects on the left are "affine" \mathcal{D}_S -schemes. More generally a \mathcal{D}_S -scheme is an S-scheme equipped with a flat connection $\mathcal{O}_Z \to \mathcal{O}_Z \otimes_{\mathcal{O}_S} \Omega^1_{S/k}$, for example $\operatorname{Spec}_S(\operatorname{Sym}_{\mathcal{O}_S} \mathcal{M})$ for any \mathcal{D}_S -module \mathcal{M} . \mathcal{D}_S -schemes give a coordinate-free way of writing nonlinear differential equations. They have an obvious forgetful functor to S-schemes, which has an adjoint \mathcal{J} , the functor of jets. Given a commutative \mathcal{O}_S -algebra A with $X = \operatorname{Spec}_S(A)$ one sets

$$\mathcal{J}X := \underline{\operatorname{Spec}}_{S}((\operatorname{Sym}_{\mathcal{O}_{S}} \mathcal{D}_{X} \otimes_{\mathcal{O}_{S}} A) / \ker(\operatorname{Sym}_{\mathcal{O}_{S}} A \to A)) \tag{9}$$

and this can be globalised by gluing. Given a morphism of \mathcal{D}_S -schemes $Y \to Z$ one defines the functor (on $\mathsf{Sch}^\mathsf{op}_{/k}$) of horizontal sections

$$\operatorname{HorSect}(Z,Y)(T) := \operatorname{Hom}_{\operatorname{Sch}_{\mathcal{D}_S}/Z}(Z \times T,Y),$$
 (10)

they are "horizontal" since they are automatically \mathcal{D}_S -scheme maps. If X is an S-scheme with a map to the \mathcal{D}_S -scheme Z then the adjunction gives as \mathcal{D}_S -scheme map $\mathcal{J}X \to Z$, and unraveling the adjunctions one has

$$\operatorname{HorSect}(Z, \mathcal{J}X) = \operatorname{Sect}(Z, X),$$
 (11)

where the functor of sections is given by $\operatorname{Sect}(Z,X)(T) := \operatorname{Hom}_{\operatorname{Sch}_S/Z}(Z \times T,X)$. Therefore one can recover X from its jet-scheme. A particular case is the functor of conformal blocks, defined by $H_{\nabla}(S,Y) := \operatorname{HorSect}(S,Y)$ for $Y \in \operatorname{Sch}_{\mathcal{D}_S}$, here $Y \to S$ is the structural map.

This has the following interpretation in terms of crystals. A crystal of S-schemes (equivalently \mathcal{D}_S -scheme) is the same as a relatively representable functor Z over the de Rham stack S_{dR} . The forgetful functor from crystals of S-schemes to S-schemes is given by pullback along the "tautological" 2-morphism $p_{\mathrm{dR},S}:S\to S_{\mathrm{dR}}$, i.e., $p_{\mathrm{dR},S}^*=-\times_{S_{\mathrm{dR}}}S$, and the jet-functor is given by pushforward $p_{\mathrm{dR},S,*}$, i.e., Weil restriction [Sta, Tag 05Y8]. Given crystals of S-schemes Y,Z with a map $Y\to Z$ over S_{dR} , the functor of horizontal sections is given by pushforward (Weil restriction) of functors along $Z\to pt$, and the conformal block functor is the particular case when we take Z=S and the structural map $Y\to S$. Therefore we see that H_{∇} is adjoint to the functor taking a scheme T to the constant \mathcal{D}_S -scheme $S\times T$, i.e.,

$$\operatorname{Hom}_{\operatorname{Sch}/k}(H_{\nabla}(S,Y),X) \cong \operatorname{Hom}_{\operatorname{Sch}_{\mathcal{D}_S}}(Y,X\times S),$$
 (12)

for any \mathcal{D}_S -scheme Y and $X \in Sch/k$.

References

[BD] Alexander Beĭlinson and Vladimir Drinfel'd. Quantization of Hitchin's integrable system and Hecke eigensheaves. Preprint available at https://math.uchicago.edu/~Drinfel'd/langlands/QuantizationHitchin.pdf.

- [BD04] Alexander Beĭlinson and Vladimir Drinfel'd. Chiral algebras, volume 51 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2004.
- [Gin98] Victor Ginzburg. Lectures on \mathcal{D} -modules, Winter 1998. Available at https://people.mpim-bonn.mpg.de/gaitsgde/grad_2009/Ginzburg.pdf.
- [Gro68] Alexander Grothendieck. Crystals and the de Rham cohomology of schemes. In *Dix Exposés sur la Cohomologie des Schémas*, page 306–358. North-Holland, Amsterdam, 1968.
- [Kap91] Mikhail M. Kapranov. On DG-modules over the de Rham complex and the vanishing cycles functor. In *Algebraic geometry (Chicago, IL, 1989)*, volume 1479 of *Lecture Notes in Math.*, pages 57–86. Springer, Berlin, 1991.
- [Lur09] Jacob Lurie. Notes on crystals and algebraic \mathcal{D} -modules, 2009. Available at https://people.mpim-bonn.mpg.de/gaitsgde/grad_2009/SeminarNotes/Nov17-19(Crystals).pdf.
- [Neg09] Andrei Negut. \mathcal{D}_X -schemes, jets and conformal blocks (the commutative case), 2009. Notes, available at https://people.mpim-bonn.mpg.de/gaitsgde/grad_2009/SeminarNotes/Nov12(Dschemes).pdf.
- [Pos11] Leonid Positselski. Two kinds of derived categories, Koszul duality, and comodule-contramodule correspondence. *Mem. Amer. Math. Soc.*, 212(996):vi+133, 2011.
- [Sai89] Morihiko Saitō. Induced \mathcal{D} -modules and differential complexes. Bull. Soc. Math. France, 117(3):361–387, 1989.
- [Sim97] Carlos Simpson. The Hodge filtration on nonabelian cohomology. In Algebraic geometry. Proceedings of the Summer Research Institute, Santa Cruz, CA, USA, July 9–29, 1995, pages 217–281. Providence, RI: American Mathematical Society, 1997.
- [Sta] The Stacks Project Authors. Stacks Project. https://stacks.math.columbia.edu.