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Almost everything below is lifted from [Sch17] so please see there for all the details.
All typos and mistakes below are my own. As a disclaimer: I make no claim to understand
p-adic Hodge theory.

1 Introduction

One of the goals of number theory is to understand the absolute Galois group of a number
field. Since this is extremely difficult we attempt to simplify the problem by working “one
place at a time”. Let L/Q), be a finite extension with ring of integers o and residue field
k. By local class field theory we have the local Artin map

rec: LX — G3P (1)

characterised by the property that “every uniformizer of L acts by the Frobenius”, and
for every finite abelian extension L'/L, rec induces an isomorphism L*/Normy, /(L") =
Gal(L'/L). In fact rec induces an isomorphism from the profinite completion

rec: LX = Gab. (2)

In other words we have a near total understanding of the “1-dimensional” representations
of G,. We would like to understand Rep,(GL) := the category of finitely generated o-
modules equipped with a continuous G-action. The paradigm of (¢, 'z, )-modules is to
understand this category by replacing the Galois action by a simpler group at the expense
of introducing a much larger coefficient ring.

2 Definition of (¢, ';)-modules

Let m € L be a uniformizer and set

oy, = %no((x»/wm = {%aX La; T o} . (3)

equipped with the Gauss norm/valuation this is a DVR with residue field k((X)). The
ring 27, can be viewed naturally as a subset of o” and hence acquires a second topology
(besides the valuation topology), which is called the weak topology since it is the topology
of coefficientwise convergence.

A Frobenius power series is an ¢(X) € o[ X] such that ¢(X) = X? mod 7 and ¢(X) =
7X mod X2. The choice of ¢ yields a Lubin-Tate formal group law (depending only on
7 up to isomorphism), Fy(X,Y) € o[X,Y] such that ¢ € End(F,). Moreover there is an
injective ring homomorphism [-]4 : 0 — End(Fy) such that [r]4 = ¢. This gives an action
of the monoid o\ {0} on &7, by a.f(X) := f([a]4(X)). Since o\ {0} = 700> this can be
viewed as an action by I'y, := 0* and the endomorphism ¢y, sending f(X) — f([7]4(X)).
These actions are both continuous for the (weak) topology.



(pr,T'L)-MODULES AND GALOIS REPRESENTATIONS

Example 2.1. When L = Q, one takes m = p, p = (1 + X)P — 1, then F4(X,Y) =
(X +1)(Y +1) —1 is the multplicative law and [a]g = (1 + X)* — 1 for a € Z,.

Any finitely generated 27;-module M acquires a canonical topology which is the quo-
tient topology of the weak topology along any surjection JZ/L@" — M. The category of
(¢r,T'1)-modules is the category of finitely generated «7;-modules M equipped with a
semilinear continuous action of I';, and a commuting p-linear continuous endomorphism
om M — M. A (pr,T1)-module M is called étale if the map ¢4l : o7, Rty o M — M
sending f ® m + fou(m), is an isomorphism!. We will sketch the construction of the
explicit equivalence

Rep,(Gr) = Mod®(a7) := {category of étale (pr,T) — modules}. (4)

3 A generalisation of the Fontaine-Winterberger theorem

Fix an algebraic closure L of L inside C,. Let M C oy be the maximal ideal and, for each
n > 1 set %, = ker([n"],)(OM) and L,, := L(#,). Set T := hm 7, and Lo U,, Ln. Of
course, Gal(L, /L) acts on .%,. In fact %, turns out to be a free rank 1 o/7™o-module
and hence T is free of rank 1 as an o-module. Hence, the choice a basis element t € T
(i.e., a compatible system of torsion points), induces the Lubin-Tate character

Xz : Gal(Loo /L) = 0* =T, (5)

which turns out to be an isomorphism. The extensions L, /L are totally ramified, in
particular, L., has residue field k.

Example 3.1. In our running example with L = Q,, m = p and Fy = @m we obtain
Fo={¢C—-1:¢*"=1} and L, = Qp(Cpn), and x1, is the cyclotomic character.

Recall that an intermediate field L C K C C, is called perfectoid if it is com-
plete, indiscretely valued and (o /pox )P = ok /pok. Given such a field we set og» :=
I'&HIHW ok /mok. This is a perfect k-algebra. Given a compatible system (a;); € og» we
can choose arbitary lifts a; of a; to o and set of := lim;_, a?l to obtain a well-defined
element of € ox. This map allows us to define a norm? | - |z on oxs by |a|ps = |of| k.
With respect to the norm |- | s, og» has the same valuation monoid as ox. The maximal
ideal of o is given in terms of | - |g» in the usual way and it turns out that the residue
fields of ox and og» are canonically isomorphic. The fraction field K’ of o» together
with | - |g» is then a perfect nonarchimedean field of characteristic p.

We have two examples of perfectoid fields, namely EOC and C,. The natural map
or,./m™ — oc,/m is injective and hence Eoo — (C; naturally. The “tilting correspondence”
due to Scholze says that K — K” gives an inclusion-respecting bijection

{perfectoid fields Lo, C K C C,} < {complete and perfect fields I’ CFcC (C;} (6)

1Setting Y = Spec(«7,), we can informally think of this condition as some kind of ¢ -equivariance or
descent datum.
2The multiplicativity of this map is immediate, and the additivity follows from the formulas:

[(a+ B = lim (a; +b)7 | = lim |a; +b;]? < lim max(|as], |b:])¢"
i— 00 1— 00 1—>00

= max(lim; 0 |a;[9", lim; 00 [b3]7) = max(|a?], |84)).
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whose inverse is given by untilting F +— F* (we do not have time to discuss this).

The group G, acts naturally on o, by o (...,a;modm,...)=(...,0(a;)modm,...).
This preserves the norm | - |<c; and in fact induces a continuous action of G, on (C;Z. The
action of Hy, := Gal(@p/Loo) C G, fixes EOO C C, and Zboo - (C;, by continuity. Hence,
we obtain a residual T';, = G,/ H-action on L.

Now let us return to the Tate module 1" of the Lubin-Tate formal group law Fy. The
Frobenius power series property implies that

t: T — 0% (Yn)n>1+ (..., yn mod TOL, 5+ s Y1 mod FO/L‘,;C,O), (7)

is a well-defined map (but not a homomorphism). The image of the basis element gives
w := 1(t) € og, . By the ramification theory of the Lubin-Tate extensions, it follows that

lw|, = |7|7/(@=Y) < 1. Hence X + w gives a ring map k[X] — oy, which extends to
k(X)) < L. We define the field of norms Ep = k(X)) to be the image of this map.
This subfield and the map ¢ have the following properties:

(i) For any v € T'y, we have v(w) = [x(7)]¢(w). In particular (by continuity) it follows
that the I'z-action on Lio preserves Er .

(ii) EIEL’G”rf = EZO and Ef? = E;, = (Clb,; we say that EIEL’e]rf (resp. EY?), is a decompletion
of L’ (resp. (CZ,).

In the preceding we introduced the perfect hull ER™" .= {z € B, : 2#" € Ey, for some m >
0}. By general field theory and the above facts, we obtain isomorphisms by restriction

Aut®*(Ch, %) = Gal(EL/EY™) & Gal(Ey/EL) =: Hp, ; (8)

here the first is by continuity and the second is by property of the perfect hull. On the
other hand we have by continuity an isomorphism

Hp = Gal(@,/L) <~ Aut™(Cp, L), 9)
and the untilting-tilting formalism gives a bijection
Aut®™(C,, Loo) — Aut®® ((C;, '), oo’ ot o, (10)

which is in fact an isomorphism of topological groups (this is non-trivial to verify). The
b

composite isomorphism Hy = Hg, is identified with o + o”.
Example 3.2. In our running example with L = Q,, m = p, Fy = @m one has Lo, =
Qp(Cp). Fizing a compatible system (Cpn)n, we obtain w = (...,(p2 —1 mod p,{, — 1
mod p,0) € o7, and F,(X)) = Eq, via X — w. Then (ii) above tells us that this gives

F,(X)(X/r=) = L’ . Restiction of the tilted action to Efo: gives an isomorphism
Gy (Gee) = Gy ()
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4 The coefficient ring revisited

In the previous section we constructed an embedding k(X)) — E';o whose image was
defined to be E;,. We would now like to lift this to am algebra morphism j:

%L °]—> W(EL)L

mod wl l% (11)

k(X) —— EL

such that j is equivariant for the I'p-actions (the I'z-action on W(Ep); being induced
by functoriality of the ramified Witt vector construction) and sends the action of ¢, to
the Frobenius Fr on W (Ez)r. Here ®q is the 0*® ghost component map. In order to
construct such a morphism we need to specify the image of X € 7, in other words, we
need to lift w € Ey, to an element wy € W(EL). One would usually use the Teichmuller
representative 7 : E;, — W(Ep)L to achieve this, however, it doesn’t have the right
equivariance properties, and so it needs to be modified.

Let Mg, := ®;'(mg,) C W(EL)r; this is a maximal ideal. Via the Lubin-Tate formal
group law F, Mg, acquires the structure of an o-module. It turns out that [r], o Frt
is a well-defined o-module endomorphism of Mg, . Ignoring questions of convergence we
can define an o-module endomorphism

{}: Mg, = Mg, {a} = lim (frls 0 ) (a), (12
the definition of {a} is rigged so that [7]4({a}) = Fr({a}). Hence, if one defines

L4 = the composite (T = mg, — Mg, RSN Mg, ) (13)

then one can verify that Fr(t4(t)) = tg(m - t). It turns out that oy = ¢ and ¢4 also has
the right I'z-equivariance.

Therefore we choose wy 1= 14(t) and the o-algebra map j : @7, — W (Ep), is detemined
by X + wg. This is I'p-equivariant and satisfies j o ¢, = Froj. It follows that the image
A :=im(j) is equipped with a (¢, "1 )-action, which coincides with that inherited from
the (Fr,I'z) action on W(Ey)y. The map j also turns out to be a topological embedding
for the respective weak topologies so that j: o/, — A is a topological isomorphism.

We now “redefine” the category of (¢r,'r)-modules by replacing instances of <7, in
the previous definition by Ay.

5 The functors

By the previous we have constructed a (Fr,I';)-stable subalgebra A, C W(Ey), which
is naturally contained in W (E}?),. We define By, to be the fraction field of A : note
that the residue field of By is identified with E;. The next techical input (which we do
not have time to prove) is the following:

Proposition 5.1. There is a unique intermediate ring
AL CAY CW(ES™), (14)

such that:
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A" is a complete DVR with uniformizer m;

B := Frac(AY") is the unique subextension of Frac(W (ET®) ) which is a mazimal
unramified extension of Er,;

D : AY /m = ET? is an isomorphism;

o AV is preserved by the Frobenius Fr and the G, action inherited from W (EF®),
(the latter coming from tilting equivalence); also Hp, fizes Ap,.

Finally we define
A := closure of A}" C W(ET?), w.r.t the 7 — adic topology. (15)

Since the Gp-action on Witt vectors is “coefficientwise”, we see that the G -action com-
mutes with Fr and (W(E??))™=! = W (k). = o. In particular A"=! = 0. Hence, we
can define, for M € Mod®* (A ), the o-linear G'z-representation

V(M) := (A @a, M)FEem=1 (16)

here G, acts diagonally and through the residual I'g-action on M.
On the other hand, by the property of unramified extensions, the Gp-action on
W(ET?) L, gives natural isomorphisms

Hy = Gal(BY/Br) = Gal(ESP/EL), (17)

so it is not so surprising (though, we do not prove it), that AfL = A;. Given V €
Rep,(G1), the A-module A ®, V acquires the diagonal G-action and the Fr-linear en-
domorphism ¢ := Fr ®id. Thus the A -module

(V) = (A®, V)it (18)

acquires a residual I'z-action and a commuting @) = ¢|Z2(V)-action. The main
theorem is

Theorem 5.2 (Fontaine, Kisin-Ren, Colmez, Schneider). The functors
¥ : Mod®(AL) S Rep,(Gr) : 2, (19)
give an equivalence of categories.

Implicit in this is of course the fact that the functors are well-defined, i.e., ¥ (M) and
2(V) are finitely generated, the actions are continuous and 2(V) is “étale”. We give a
sketch of the proof in the case of w-torsion coeflicients, i.e., the equivalence

¥ : Mod®(Er) < Repy(GL) : 2, (20)

given by ¥ (M) := (ET? ®@g, M)¥=! and 2(V) := (E}” ® V)L, For the general case
one can use a dévissage argument to bootstrap this to n"-torsion coefficients and then
take limits.

By an argument involving Hilbert 90 the E7P-vector space ET” @ V has a basis by
Hyp-fixed vectors. Using this basis it is easily verified that 2(V) is finitely generated and
the natural morphism

E7’ ®g, 2(V) = ETY @,V (21)
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is an isomorphism (one says that V is admissible). Hence using (21) we calculate
V(P(V)) = (BL @, 2(V))P~" = (EFP @, V)P~ = (BE") " en V=V. (22)

On the other hand, for M € Mod®*(Ey) it is a consequence of Galois/étale descent (here
is where we use that ('l is an isomorphism), that

dimy, ¥ (M)#=" = dimgeer E;” ®p, M = dimg, M (23)

and the natural map
EYP @, ¥ (M) = ETY @, M, (24)

is an isomorphism. Hence using (24) we calculate
(7 (M)) = (BL” @ ¥ (M) = (B 0p, M) = (E;")" @p, M = M. (25)

which completes our proof sketch.
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