(φ_L, Γ_L) -modules.

Arun Soor

Almost everything below is lifted from [Sch17] so please see there for all the details. All typos and mistakes below are my own. As a disclaimer: I make no claim to understand p-adic Hodge theory.

1 Introduction

One of the goals of number theory is to understand the absolute Galois group of a number field. Since this is extremely difficult we attempt to simplify the problem by working "one place at a time". Let L/\mathbb{Q}_p be a finite extension with ring of integers o and residue field k. By local class field theory we have the local Artin map

$$\operatorname{rec}: L^{\times} \to G_L^{\operatorname{ab}} \tag{1}$$

characterised by the property that "every uniformizer of L acts by the Frobenius", and for every finite abelian extension L'/L, rec induces an isomorphism $L^{\times}/\operatorname{Norm}_{L'/L}(L') \xrightarrow{\sim} \operatorname{Gal}(L'/L)$. In fact rec induces an isomorphism from the profinite completion

$$\operatorname{rec}: \widehat{L^{\times}} \xrightarrow{\sim} G_L^{\operatorname{ab}}.$$
 (2)

In other words we have a near total understanding of the "1-dimensional" representations of G_L . We would like to understand $\operatorname{Rep}_o(G_L) :=$ the category of finitely generated *o*modules equipped with a continuous G_L -action. The paradigm of (φ_L, Γ_L) -modules is to understand this category by replacing the Galois action by a simpler group at the expense of introducing a much larger coefficient ring.

2 Definition of (φ_L, Γ_L) -modules

Let $\pi \in L$ be a uniformizer and set

$$\mathscr{A}_{L} := \varprojlim_{m} o(\!(X)\!) / \pi^{m} = \left\{ \sum_{i \in \mathbb{Z}} a_{i} X^{i} : a_{i} \xrightarrow{i \to -\infty} 0 \right\}.$$
(3)

equipped with the Gauss norm/valuation this is a DVR with residue field k((X)). The ring \mathscr{A}_L can be viewed naturally as a subset of $o^{\mathbb{Z}}$ and hence acquires a second topology (besides the valuation topology), which is called the weak topology since it is the topology of coefficientwise convergence.

A Frobenius power series is an $\phi(X) \in o[\![X]\!]$ such that $\phi(X) = X^q \mod \pi$ and $\phi(X) = \pi X \mod X^2$. The choice of ϕ yields a Lubin-Tate formal group law (depending only on π up to isomorphism), $F_{\phi}(X, Y) \in o[\![X, Y]\!]$ such that $\phi \in \operatorname{End}(F_{\phi})$. Moreover there is an injective ring homomorphism $[\cdot]_{\phi} : o \to \operatorname{End}(F_{\phi})$ such that $[\pi]_{\phi} = \phi$. This gives an action of the monoid $o \setminus \{0\}$ on \mathscr{A}_L by $a.f(X) := f([a]_{\phi}(X))$. Since $o \setminus \{0\} = \pi^{\mathbb{N}_0} o^{\times}$ this can be viewed as an action by $\Gamma_L := o^{\times}$ and the endomorphism φ_L sending $f(X) \mapsto f([\pi]_{\phi}(X))$. These actions are both continuous for the (weak) topology.

Example 2.1. When $L = \mathbb{Q}_p$ one takes $\pi = p$, $\varphi = (1 + X)^p - 1$, then $F_{\phi}(X, Y) = (X + 1)(Y + 1) - 1$ is the multiplicative law and $[a]_{\phi} = (1 + X)^a - 1$ for $a \in \mathbb{Z}_p$.

Any finitely generated \mathscr{A}_L -module M acquires a canonical topology which is the quotient topology of the weak topology along any surjection $\mathscr{A}_L^{\oplus n} \to M$. The category of (φ_L, Γ_L) -modules is the category of finitely generated \mathscr{A}_L -modules M equipped with a semilinear continuous action of Γ_L and a commuting φ_L -linear continuous endomorphism $\varphi_M : M \to M$. A (φ_L, Γ_L) -module M is called *étale* if the map $\varphi_M^{\text{lin}} : \mathscr{A}_L \otimes_{\mathscr{A}_L, \varphi_L} M \to M$ sending $f \otimes m \mapsto f \varphi_M(m)$, is an isomorphism¹. We will sketch the construction of the explicit equivalence

$$\operatorname{Rep}_{o}(G_{L}) \cong \operatorname{Mod}^{\operatorname{et}}(\mathscr{A}_{L}) := \{ \operatorname{category of \'etale} (\varphi_{L}, \Gamma_{L}) - \operatorname{modules} \}.$$
(4)

3 A generalisation of the Fontaine-Winterberger theorem

Fix an algebraic closure \overline{L} of L inside \mathbb{C}_p . Let $\mathfrak{M} \subset o_{\overline{L}}$ be the maximal ideal and, for each $n \geq 1$ set $\mathscr{F}_n := \ker([\pi^n]_{\phi})(\mathfrak{M})$ and $L_n := L(\mathscr{F}_n)$. Set $T := \varprojlim_n \mathscr{F}_n$ and $L_{\infty} \bigcup_n L_n$. Of course, $\operatorname{Gal}(L_n/L)$ acts on \mathscr{F}_n . In fact \mathscr{F}_n turns out to be a free rank $1 \ o/\pi^n o$ -module and hence T is free of rank 1 as an o-module. Hence, the choice a basis element $t \in T$ (i.e., a compatible system of torsion points), induces the Lubin-Tate character

$$\chi_L : \operatorname{Gal}(L_\infty/L) \to o^{\times} = \Gamma_L, \tag{5}$$

which turns out to be an isomorphism. The extensions L_n/L are totally ramified, in particular, L_{∞} has residue field k.

Example 3.1. In our running example with $L = \mathbb{Q}_p$, $\pi = p$ and $F_{\phi} = \widehat{\mathbb{G}}_m$ we obtain $\mathcal{F}_n = \{\zeta - 1 : \zeta^{p^n} = 1\}$ and $L_n = \mathbb{Q}_p(\zeta_{p^n})$, and χ_L is the cyclotomic character.

Recall that an intermediate field $L \subset K \subset \mathbb{C}_p$ is called *perfectoid* if it is complete, indiscretely valued and $(o_K/po_K)^p = o_K/po_K$. Given such a field we set $o_{K^\flat} := \lim_{x \mapsto x^q} o_K/\pi o_K$. This is a perfect k-algebra. Given a compatible system $(\alpha_i)_i \in o_{K^\flat}$ we can choose arbitrary lifts a_i of α_i to o_K and set $\alpha^{\sharp} := \lim_{i \to \infty} a_i^{q^i}$ to obtain a well-defined element $\alpha^{\sharp} \in o_K$. This map allows us to define a norm² $|\cdot|_{K^\flat}$ on o_{K^\flat} by $|\alpha|_{K^\flat} := |\alpha^{\sharp}|_K$. With respect to the norm $|\cdot|_{K^\flat}$, o_{K^\flat} has the same valuation monoid as o_K . The maximal ideal of o_K is given in terms of $|\cdot|_{K^\flat}$ in the usual way and it turns out that the residue fields of o_K and o_{K^\flat} are canonically isomorphic. The fraction field K^\flat of o_{K^\flat} together with $|\cdot|_{K^\flat}$ is then a perfect nonarchimedean field of characteristic p.

We have two examples of perfectoid fields, namely \widehat{L}_{∞} and \mathbb{C}_p . The natural map $o_{L_{\infty}}/\pi \to o_{\mathbb{C}_p}/\pi$ is injective and hence $\widehat{L}_{\infty} \hookrightarrow \mathbb{C}_p^{\flat}$ naturally. The "tilting correspondence" due to Scholze says that $K \mapsto K^{\flat}$ gives an inclusion-respecting bijection

{perfectoid fields $\widehat{L}_{\infty} \subset K \subset \mathbb{C}_p$ } \leftrightarrow {complete and perfect fields $\widehat{L}_{\infty}^{\flat} \subset F \subset \mathbb{C}_p^{\flat}$ } (6)

$$|(\alpha + \beta)^{\sharp}| = |\lim_{i \to \infty} (a_i + b_i)^{q^i}| = \lim_{i \to \infty} |a_i + b_i|^{q^i} \le \lim_{i \to \infty} \max(|a_i|, |b_i|)^{q^i}$$
$$= \max(\lim_{i \to \infty} |a_i|^{q^i}, \lim_{i \to \infty} |b_i|^{q^i}) = \max(|\alpha^{\sharp}|, |\beta^{\sharp}|).$$

¹Setting $Y = \text{Spec}(\mathscr{A}_L)$, we can informally think of this condition as some kind of φ_L -equivariance or descent datum.

 $^{^{2}}$ The multiplicativity of this map is immediate, and the additivity follows from the formulas:

Arun Soor

whose inverse is given by *untilting* $F \mapsto F^{\sharp}$ (we do not have time to discuss this).

The group G_L acts naturally on $o_{\mathbb{C}_p^{\flat}}$ by $\sigma \cdot (\ldots, a_i \mod \pi, \ldots) = (\ldots, \sigma(a_i) \mod \pi, \ldots)$. This preserves the norm $|\cdot|_{\mathbb{C}_p^{\flat}}$ and in fact induces a continuous action of G_L on \mathbb{C}_p^{\flat} . The action of $H_L := \operatorname{Gal}(\overline{\mathbb{Q}}_p/L_\infty) \subseteq G_L$ fixes $\widehat{L}_\infty \subseteq \mathbb{C}_p$ and $\widehat{L}_\infty^{\flat} \subseteq \mathbb{C}_p^{\flat}$, by continuity. Hence, we obtain a residual $\Gamma_L = G_L/H_L$ -action on $\widehat{L}_\infty^{\flat}$.

Now let us return to the Tate module T of the Lubin-Tate formal group law F_{ϕ} . The Frobenius power series property implies that

$$\iota: T \mapsto o_{\widehat{L}_{\infty}^{\flat}} \quad (y_n)_{n \ge 1} \mapsto (\dots, y_n \mod \pi o_{\widehat{L}_{\infty}^{\flat}}, \dots, y_1 \mod \pi o_{\widehat{L}_{\infty}^{\flat}}, 0), \tag{7}$$

is a well-defined map (but not a homomorphism). The image of the basis element gives $\omega := \iota(t) \in o_{\widehat{L}^{\flat}_{\infty}}$. By the ramification theory of the Lubin-Tate extensions, it follows that $|\omega|_{\flat} = |\pi|^{q/(q-1)} < 1$. Hence $X \mapsto \omega$ gives a ring map $k[\![X]\!] \to o_{\widehat{L}^{\flat}_{\infty}}$ which extends to $k(\!(X)\!) \hookrightarrow \widehat{L}^{\flat}_{\infty}$. We define the *field of norms* $\mathbf{E}_L \cong k(\!(X)\!)$ to be the image of this map. This subfield and the map ι have the following properties:

(i) For any $\gamma \in \Gamma_L$ we have $\gamma(\omega) = [\chi_L(\gamma)]_{\phi}(\omega)$. In particular (by continuity) it follows that the Γ_L -action on $\widehat{L}^{\flat}_{\infty}$ preserves \mathbf{E}_L .

(ii)
$$\mathbf{\widetilde{E}}_{L}^{\text{perf}} = \widehat{L}_{\infty}^{\flat}$$
 and $\mathbf{\widetilde{E}}_{L}^{\text{sep}} = \mathbf{\widetilde{E}}_{L} = \mathbb{C}_{p}^{\flat}$; we say that $\mathbf{\widetilde{E}}_{L}^{\text{perf}}$ (resp. $\mathbf{E}_{L}^{\text{sep}}$), is a decompletion of $\widehat{L}_{\infty}^{\flat}$ (resp. \mathbb{C}_{p}^{\flat}).

In the preceding we introduced the *perfect hull* $\mathbf{E}_L^{\text{perf}} := \{x \in \overline{\mathbf{E}}_L : x^{p^m} \in \mathbf{E}_L \text{ for some } m \geq 0\}$. By general field theory and the above facts, we obtain isomorphisms by restriction

$$\operatorname{Aut}^{\operatorname{cts}}(\mathbb{C}_p^{\flat}, \widehat{L}_{\infty}^{\flat}) \xrightarrow{\sim} \operatorname{Gal}(\overline{\mathbf{E}}_L / \mathbf{E}_L^{\operatorname{perf}}) \xrightarrow{\sim} \operatorname{Gal}(\mathbf{E}_L^{\operatorname{sep}} / \mathbf{E}_L) =: H_{\mathbf{E}_L};$$
(8)

here the first is by continuity and the second is by property of the perfect hull. On the other hand we have by continuity an isomorphism

$$H_L = \operatorname{Gal}(\overline{\mathbb{Q}}_p / \widehat{L}_\infty) \xleftarrow{\sim} \operatorname{Aut}^{\operatorname{cts}}(\mathbb{C}_p, \widehat{L}_\infty), \tag{9}$$

and the untilting-tilting formalism gives a bijection

$$\operatorname{Aut}^{\operatorname{cts}}(\mathbb{C}_p, \widehat{L}_\infty) \to \operatorname{Aut}^{\operatorname{cts}}(\mathbb{C}_p^{\flat}, \widehat{L}_\infty^{\flat}), \quad \sigma \mapsto \sigma^{\flat}, \quad \sigma^{\sharp} \longleftrightarrow \sigma,$$
(10)

which is in fact an isomorphism of topological groups (this is non-trivial to verify). The composite isomorphism $H_L \xrightarrow{\sim} H_{\mathbf{E}_L}$ is identified with $\sigma \mapsto \sigma^{\flat}$.

Example 3.2. In our running example with $L = \mathbb{Q}_p$, $\pi = p$, $F_{\phi} = \widehat{\mathbb{G}}_m$ one has $L_{\infty} = \mathbb{Q}_p(\zeta_{p^{\infty}})$. Fixing a compatible system $(\zeta_{p^n})_n$, we obtain $\omega := (\ldots, \zeta_{p^2} - 1 \mod p, \zeta_p - 1 \mod p, \zeta_p - 1 \mod p, 0) \in o_{\widehat{L}_{\infty}^b}$ and $\mathbb{F}_p((X)) \xrightarrow{\sim} \mathbf{E}_{\mathbb{Q}_p}$ via $X \mapsto \omega$. Then (ii) above tells us that this gives $\widehat{\mathbb{F}_p((X))(X^{1/p^{\infty}})} \xrightarrow{\sim} \widehat{L}_{\infty}^b$. Restiction of the tilted action to $\mathbf{E}_{\mathbb{Q}_p}^{\text{sep}}$ gives an isomorphism $G_{\mathbb{Q}_p(\zeta_{p^{\infty}})} \cong G_{\mathbb{F}_p((X))}$.

4 The coefficient ring revisited

In the previous section we constructed an embedding $k((X)) \hookrightarrow \widehat{L}^{\flat}_{\infty}$ whose image was defined to be \mathbf{E}_L . We would now like to lift this to am algebra morphism j:

$$\begin{array}{cccc}
\mathscr{A}_{L} & \stackrel{\mathbf{j}}{\longrightarrow} W(\mathbf{E}_{L})_{L} \\
& & & & & \downarrow \\
& & & & \downarrow \\
& & & & \downarrow \\
& & & & & & \downarrow \\
& & & & & & & \\
& & & & & & & \\
\end{array} \tag{11}$$

such that j is equivariant for the Γ_L -actions (the Γ_L -action on $W(\mathbf{E}_L)_L$ being induced by functoriality of the ramified Witt vector construction) and sends the action of φ_L to the Frobenius Fr on $W(\mathbf{E}_L)_L$. Here Φ_0 is the 0th ghost component map. In order to construct such a morphism we need to specify the image of $X \in \mathscr{A}_L$, in other words, we need to lift $\omega \in \mathbf{E}_L$ to an element $\omega_{\phi} \in W(\mathbf{E}_L)_L$. One would usually use the Teichmuller representative $\tau : \mathbf{E}_L \to W(\mathbf{E}_L)_L$ to achieve this, however, it doesn't have the right equivariance properties, and so it needs to be modified.

Let $\mathbb{M}_{\mathbf{E}_L} := \Phi_0^{-1}(\mathfrak{m}_{\mathbf{E}_L}) \subseteq W(\mathbf{E}_L)_L$; this is a maximal ideal. Via the Lubin-Tate formal group law F_{ϕ} , $\mathbb{M}_{\mathbf{E}_L}$ acquires the structure of an *o*-module. It turns out that $[\pi]_{\phi} \circ \mathrm{Fr}^{-1}$ is a well-defined *o*-module endomorphism of $\mathbb{M}_{\mathbf{E}_L}$. Ignoring questions of convergence we can define an *o*-module endomorphism

$$\{\cdot\}: \mathbb{M}_{\mathbf{E}_L} \to \mathbb{M}_{\mathbf{E}_L} \quad \{\alpha\} := \lim_{i \to \infty} ([\pi]_{\phi} \circ \operatorname{Fr}^{-1})^i(\alpha), \tag{12}$$

the definition of $\{\alpha\}$ is rigged so that $[\pi]_{\phi}(\{\alpha\}) = \operatorname{Fr}(\{\alpha\})$. Hence, if one defines

$$\iota_{\phi} := \text{the composite } (T \xrightarrow{\iota} \mathfrak{m}_{\mathbf{E}_{L}} \xrightarrow{\tau} \mathbb{M}_{\mathbf{E}_{L}} \xrightarrow{\{\cdot\}} \mathbb{M}_{\mathbf{E}_{L}})$$
(13)

then one can verify that $Fr(\iota_{\phi}(t)) = \iota_{\phi}(\pi \cdot t)$. It turns out that $\Phi_0 \iota_{\phi} = \iota$ and ι_{ϕ} also has the right Γ_L -equivariance.

Therefore we choose $\omega_{\phi} := \iota_{\phi}(t)$ and the *o*-algebra map $j : \mathscr{A}_L \to W(\mathbf{E}_L)_L$ is detemined by $X \mapsto \omega_{\phi}$. This is Γ_L -equivariant and satisfies $j \circ \varphi_L = \operatorname{Fr} \circ j$. It follows that the image $\mathbf{A}_L := \operatorname{im}(j)$ is equipped with a (φ_L, Γ_L) -action, which coincides with that inherited from the $(\operatorname{Fr}, \Gamma_L)$ action on $W(\mathbf{E}_L)_L$. The map j also turns out to be a topological embedding for the respective weak topologies so that $j : \mathscr{A}_L \to \mathbf{A}_L$ is a topological isomorphism.

We now "redefine" the category of (φ_L, Γ_L) -modules by replacing instances of \mathscr{A}_L in the previous definition by \mathbf{A}_L .

5 The functors

By the previous we have constructed a (Fr, Γ_L) -stable subalgebra $\mathbf{A}_L \subseteq W(\mathbf{E}_L)_L$, which is naturally contained in $W(\mathbf{E}_L^{\text{sep}})_L$. We define \mathbf{B}_L to be the fraction field of \mathbf{A}_L : note that the residue field of \mathbf{B}_L is identified with \mathbf{E}_L . The next techical input (which we do not have time to prove) is the following:

Proposition 5.1. There is a unique intermediate ring

$$\mathbf{A}_L \subseteq \mathbf{A}_L^{\mathrm{nr}} \subseteq W(\mathbf{E}_L^{\mathrm{sep}})_L \tag{14}$$

such that:

Arun Soor

- $\mathbf{A}_{L}^{\mathrm{nr}}$ is a complete DVR with uniformizer π ;
- $\mathbf{B}_L^{\mathrm{nr}} := \operatorname{Frac}(\mathbf{A}_L^{\mathrm{nr}})$ is the unique subextension of $\operatorname{Frac}(W(\mathbf{E}_L^{\mathrm{sep}})_L)$ which is a maximal unramified extension of \mathbf{E}_L ;
- $\Phi_0: \mathbf{A}_L^{\mathrm{nr}}/\pi \xrightarrow{\sim} \mathbf{E}_L^{\mathrm{sep}}$ is an isomorphism;
- $\mathbf{A}_{L}^{\mathrm{nr}}$ is preserved by the Frobenius Fr and the G_{L} action inherited from $W(\mathbf{E}_{L}^{\mathrm{sep}})_{L}$ (the latter coming from tilting equivalence); also H_{L} fixes \mathbf{A}_{L} .

Finally we define

$$\mathbf{A} := \text{ closure of } \mathbf{A}_L^{\mathrm{nr}} \subseteq W(\mathbf{E}_L^{\mathrm{sep}})_L \text{ w.r.t the } \pi - \text{adic topology.}$$
(15)

Since the G_L -action on Witt vectors is "coefficientwise", we see that the G_L -action commutes with Fr and $(W(\mathbf{E}_L^{sep})_L)^{Fr=1} = W(k)_L = o$. In particular $\mathbf{A}^{Fr=1} = o$. Hence, we can define, for $M \in \text{Mod}^{\text{et}}(\mathbf{A}_L)$, the *o*-linear G_L -representation

$$\mathscr{V}(M) := (\mathbf{A} \otimes_{\mathbf{A}_L} M)^{\operatorname{Fr} \otimes \varphi_M = 1}, \tag{16}$$

here G_L acts diagonally and through the residual Γ_L -action on M.

On the other hand, by the property of unramified extensions, the G_L -action on $W(\mathbf{E}_L^{sep})_L$ gives natural isomorphisms

$$H_L \xrightarrow{\sim} \operatorname{Gal}(\mathbf{B}_L^{\operatorname{nr}}/\mathbf{B}_L) \xrightarrow{\sim} \operatorname{Gal}(\mathbf{E}_L^{\operatorname{sep}}/\mathbf{E}_L), \tag{17}$$

so it is not so surprising (though, we do not prove it), that $\mathbf{A}^{H_L} = \mathbf{A}_L$. Given $V \in \operatorname{Rep}_o(G_L)$, the **A**-module $\mathbf{A} \otimes_o V$ acquires the diagonal G_L -action and the Fr-linear endomorphism $\varphi := \operatorname{Fr} \otimes \operatorname{id}$. Thus the \mathbf{A}_L -module

$$\mathscr{D}(V) := (\mathbf{A} \otimes_o V)^{H_L} \tag{18}$$

acquires a residual Γ_L -action and a commuting $\varphi_{\mathscr{D}(V)} := \varphi|\mathscr{D}(V)$ -action. The main theorem is

Theorem 5.2 (Fontaine, Kisin-Ren, Colmez, Schneider). The functors

$$\mathscr{V}: \operatorname{Mod}^{\operatorname{et}}(\mathbf{A}_L) \leftrightarrows \operatorname{Rep}_o(G_L) : \mathscr{D}, \tag{19}$$

give an equivalence of categories.

Implicit in this is of course the fact that the functors are well-defined, i.e., $\mathscr{V}(M)$ and $\mathscr{D}(V)$ are finitely generated, the actions are continuous and $\mathscr{D}(V)$ is "étale". We give a sketch of the proof in the case of π -torsion coefficients, i.e., the equivalence

$$\mathscr{V}: \operatorname{Mod}^{\operatorname{et}}(\mathbf{E}_L) \leftrightarrows \operatorname{Rep}_k(G_L) : \mathscr{D}, \tag{20}$$

given by $\mathscr{V}(M) := (\mathbf{E}_L^{\text{sep}} \otimes_{\mathbf{E}_L} M)^{\varphi=1}$ and $\mathscr{D}(V) := (\mathbf{E}_L^{\text{sep}} \otimes_k V)^{H_L}$. For the general case one can use a *dévissage* argument to bootstrap this to π^m -torsion coefficients and then take limits.

By an argument involving Hilbert 90 the $\mathbf{E}_L^{\text{sep}}$ -vector space $\mathbf{E}_L^{\text{sep}} \otimes_k V$ has a basis by H_L -fixed vectors. Using this basis it is easily verified that $\mathscr{D}(V)$ is finitely generated and the natural morphism

$$\mathbf{E}_{L}^{\mathrm{sep}} \otimes_{\mathbf{E}_{L}} \mathscr{D}(V) \xrightarrow{\sim} \mathbf{E}_{L}^{\mathrm{sep}} \otimes_{k} V \tag{21}$$

 (φ_L, Γ_L) -modules and Galois representations

is an isomorphism (one says that V is *admissible*). Hence using (21) we calculate

$$\mathscr{V}(\mathscr{D}(V)) = (\mathbf{E}_L \otimes_{\mathbf{E}_L} \mathscr{D}(V))^{\varphi=1} \xrightarrow{\sim} (\mathbf{E}_L^{\operatorname{sep}} \otimes_k V)^{\varphi=1} = (\mathbf{E}_L^{\operatorname{sep}})^{\operatorname{Fr}=1} \otimes_k V = V.$$
(22)

On the other hand, for $M \in \text{Mod}^{\text{et}}(\mathbf{E}_L)$ it is a consequence of Galois/étale descent (here is where we use that φ_M^{lin} is an isomorphism), that

$$\dim_k \mathscr{V}(M)^{\varphi=1} = \dim_{\mathbf{E}_L^{\mathrm{sep}}} \mathbf{E}_L^{\mathrm{sep}} \otimes_{\mathbf{E}_L} M = \dim_{\mathbf{E}_L} M$$
(23)

and the natural map

$$\mathbf{E}_{L}^{\mathrm{sep}} \otimes_{k} \mathscr{V}(M) \xrightarrow{\sim} \mathbf{E}_{L}^{\mathrm{sep}} \otimes_{\mathbf{E}_{L}} M, \tag{24}$$

is an isomorphism. Hence using (24) we calculate

$$\mathscr{D}(\mathscr{V}(M)) = (\mathbf{E}_{L}^{\operatorname{sep}} \otimes_{k} \mathscr{V}(M))^{H_{L}} \xrightarrow{\sim} (\mathbf{E}_{L}^{\operatorname{sep}} \otimes_{\mathbf{E}_{L}} M)^{H_{L}} = (\mathbf{E}_{L}^{\operatorname{sep}})^{H_{L}} \otimes_{\mathbf{E}_{L}} M = M.$$
(25)

which completes our proof sketch.

References

[Sch17] Peter Schneider. Galois representations and (φ, Γ) -modules. Vol. 164. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2017, pp. vii+148. ISBN: 978-1-107-18858-7. DOI: 10.1017/9781316981252. URL: https://doi.org/10.1017/9781316981252.