$\left(\varphi_{L}, \Gamma_{L}\right)$-modules.

Arun Soor

Almost everything below is lifted from [Sch17] so please see there for all the details. All typos and mistakes below are my own. As a disclaimer: I make no claim to understand p-adic Hodge theory.

1 Introduction

One of the goals of number theory is to understand the absolute Galois group of a number field. Since this is extremely difficult we attempt to simplify the problem by working "one place at a time". Let L / \mathbb{Q}_{p} be a finite extension with ring of integers o and residue field k. By local class field theory we have the local Artin map

$$
\begin{equation*}
\text { rec }: L^{\times} \rightarrow G_{L}^{\mathrm{ab}} \tag{1}
\end{equation*}
$$

characterised by the property that "every uniformizer of L acts by the Frobenius", and for every finite abelian extension L^{\prime} / L, rec induces an isomorphism $L^{\times} / \operatorname{Norm}_{L^{\prime} / L}\left(L^{\prime}\right) \xrightarrow{\sim}$ $\operatorname{Gal}\left(L^{\prime} / L\right)$. In fact rec induces an isomorphism from the profinite completion

$$
\begin{equation*}
\text { rec }: \widehat{L^{\times}} \xrightarrow{\sim} G_{L}^{\mathrm{ab}} \tag{2}
\end{equation*}
$$

In other words we have a near total understanding of the "1-dimensional" representations of G_{L}. We would like to understand $\operatorname{Rep}_{o}\left(G_{L}\right):=$ the category of finitely generated omodules equipped with a continuous G_{L}-action. The paradigm of $\left(\varphi_{L}, \Gamma_{L}\right)$-modules is to understand this category by replacing the Galois action by a simpler group at the expense of introducing a much larger coefficient ring.

2 Definition of $\left(\varphi_{L}, \Gamma_{L}\right)$-modules

Let $\pi \in L$ be a uniformizer and set

$$
\begin{equation*}
\mathscr{A}_{L}:=\underset{m}{\lim _{\gtrless}} o((X)) / \pi^{m}=\left\{\sum_{i \in \mathbb{Z}} a_{i} X^{i}: a_{i} \xrightarrow{i \rightarrow-\infty} 0\right\} \tag{3}
\end{equation*}
$$

equipped with the Gauss norm/valuation this is a DVR with residue field $k((X))$. The ring \mathscr{A}_{L} can be viewed naturally as a subset of $o^{\mathbb{Z}}$ and hence acquires a second topology (besides the valuation topology), which is called the weak topology since it is the topology of coefficientwise convergence.

A Frobenius power series is an $\phi(X) \in o \llbracket X \rrbracket$ such that $\phi(X)=X^{q} \bmod \pi$ and $\phi(X)=$ $\pi X \bmod X^{2}$. The choice of ϕ yields a Lubin-Tate formal group law (depending only on π up to isomorphism), $F_{\phi}(X, Y) \in o \llbracket X, Y \rrbracket$ such that $\phi \in \operatorname{End}\left(F_{\phi}\right)$. Moreover there is an injective ring homomorphism $[\cdot]_{\phi}: o \rightarrow \operatorname{End}\left(F_{\phi}\right)$ such that $[\pi]_{\phi}=\phi$. This gives an action of the monoid $o \backslash\{0\}$ on \mathscr{A}_{L} by a.f $(X):=f\left([a]_{\phi}(X)\right)$. Since $o \backslash\{0\}=\pi^{\mathbb{N}_{0}} o^{\times}$this can be viewed as an action by $\Gamma_{L}:=o^{\times}$and the endomorphism φ_{L} sending $f(X) \mapsto f\left([\pi]_{\phi}(X)\right)$. These actions are both continuous for the (weak) topology.

Example 2.1. When $L=\mathbb{Q}_{p}$ one takes $\pi=p, \varphi=(1+X)^{p}-1$, then $F_{\phi}(X, Y)=$ $(X+1)(Y+1)-1$ is the multplicative law and $[a]_{\phi}=(1+X)^{a}-1$ for $a \in \mathbb{Z}_{p}$.

Any finitely generated \mathscr{A}_{L}-module M acquires a canonical topology which is the quotient topology of the weak topology along any surjection $\mathscr{A}_{L}^{\oplus n} \rightarrow M$. The category of $\left(\varphi_{L}, \Gamma_{L}\right)$-modules is the category of finitely generated \mathscr{A}_{L}-modules M equipped with a semilinear continuous action of Γ_{L} and a commuting φ_{L}-linear continuous endomorphism $\varphi_{M}: M \rightarrow M . \mathrm{A}\left(\varphi_{L}, \Gamma_{L}\right)$-module M is called étale if the map $\varphi_{M}^{\operatorname{lin}}: \mathscr{A}_{L} \otimes_{\mathscr{A}_{L}, \varphi_{L}} M \rightarrow M$ sending $f \otimes m \mapsto f \varphi_{M}(m)$, is an isomorphism ${ }^{1}$. We will sketch the construction of the explicit equivalence

$$
\begin{equation*}
\operatorname{Rep}_{o}\left(G_{L}\right) \cong \operatorname{Mod}^{\mathrm{et}}\left(\mathscr{A}_{L}\right):=\left\{\text { category of étale }\left(\varphi_{L}, \Gamma_{L}\right)-\text { modules }\right\} \tag{4}
\end{equation*}
$$

3 A generalisation of the Fontaine-Winterberger theorem

Fix an algebraic closure \bar{L} of L inside \mathbb{C}_{p}. Let $\mathfrak{M} \subset o_{\bar{L}}$ be the maximal ideal and, for each $n \geq 1$ set $\mathscr{F}_{n}:=\operatorname{ker}\left(\left[\pi^{n}\right]_{\phi}\right)(\mathfrak{M})$ and $L_{n}:=L\left(\mathscr{F}_{n}\right)$. Set $T:=\lim _{\leftrightarrows} \mathscr{F}_{n}$ and $L_{\infty} \bigcup_{n} L_{n}$. Of course, $\operatorname{Gal}\left(L_{n} / L\right)$ acts on \mathscr{F}_{n}. In fact \mathscr{F}_{n} turns out to be a free rank $1 o / \pi^{n} o$-module and hence T is free of rank 1 as an o-module. Hence, the choice a basis element $t \in T$ (i.e., a compatible system of torsion points), induces the Lubin-Tate character

$$
\begin{equation*}
\chi_{L}: \operatorname{Gal}\left(L_{\infty} / L\right) \rightarrow o^{\times}=\Gamma_{L} \tag{5}
\end{equation*}
$$

which turns out to be an isomorphism. The extensions L_{n} / L are totally ramified, in particular, L_{∞} has residue field k.
Example 3.1. In our running example with $L=\mathbb{Q}_{p}, \pi=p$ and $F_{\phi}=\widehat{\mathbb{G}}_{m}$ we obtain $\mathcal{F}_{n}=\left\{\zeta-1: \zeta^{p^{n}}=1\right\}$ and $L_{n}=\mathbb{Q}_{p}\left(\zeta_{p^{n}}\right)$, and χ_{L} is the cyclotomic character.

Recall that an intermediate field $L \subset K \subset \mathbb{C}_{p}$ is called perfectoid if it is complete, indiscretely valued and $\left(o_{K} / p o_{K}\right)^{p}=o_{K} / p o_{K}$. Given such a field we set $o_{K^{b}}:=$ $\lim _{\varliminf_{x \mapsto x^{q}}} o_{K} / \pi o_{K}$. This is a perfect k-algebra. Given a compatible system $\left(\alpha_{i}\right)_{i} \in o_{K^{b}}$ we can choose arbitary lifts a_{i} of α_{i} to o_{K} and set $\alpha^{\sharp}:=\lim _{i \rightarrow \infty} a_{i}^{q^{i}}$ to obtain a well-defined element $\alpha^{\sharp} \in o_{K}$. This map allows us to define a norm ${ }^{2}|\cdot|_{K^{b}}$ on $o_{K^{b}}$ by $|\alpha|_{K^{b}}:=\left|\alpha^{\sharp}\right|_{K}$. With respect to the norm $|\cdot|_{K^{b}}, o_{K^{b}}$ has the same valuation monoid as o_{K}. The maximal ideal of $o_{K^{b}}$ is given in terms of $|\cdot|_{K^{b}}$ in the usual way and it turns out that the residue fields of o_{K} and $o_{K^{b}}$ are canonically isomorphic. The fraction field K^{b} of $o_{K^{b}}$ together with $|\cdot|_{K^{b}}$ is then a perfect nonarchimedean field of characteristic p.

We have two examples of perfectoid fields, namely \widehat{L}_{∞} and \mathbb{C}_{p}. The natural map $o_{L_{\infty}} / \pi \rightarrow o_{\mathbb{C}_{p}} / \pi$ is injective and hence $\widehat{L}_{\infty} \hookrightarrow \mathbb{C}_{p}^{b}$ naturally. The "tilting correspondence" due to Scholze says that $K \mapsto K^{b}$ gives an inclusion-respecting bijection

$$
\begin{equation*}
\left\{\text { perfectoid fields } \widehat{L}_{\infty} \subset K \subset \mathbb{C}_{p}\right\} \leftrightarrow\left\{\text { complete and perfect fields } \widehat{L}_{\infty}^{b} \subset F \subset \mathbb{C}_{p}^{b}\right\} \tag{6}
\end{equation*}
$$

[^0]whose inverse is given by untilting $F \mapsto F^{\sharp}$ (we do not have time to discuss this).
The group G_{L} acts naturally on $o_{\mathbb{C}_{p}^{b}}$ by $\sigma \cdot\left(\ldots, a_{i} \bmod \pi, \ldots\right)=\left(\ldots, \sigma\left(a_{i}\right) \bmod \pi, \ldots\right)$. This preserves the norm $|\cdot|_{\mathbb{C}_{p}^{b}}$ and in fact induces a continuous action of G_{L} on \mathbb{C}_{p}^{b}. The action of $H_{L}:=\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / L_{\infty}\right) \subseteq G_{L}$ fixes $\widehat{L}_{\infty} \subseteq \mathbb{C}_{p}$ and $\widehat{L}_{\infty}^{b} \subseteq \mathbb{C}_{p}^{b}$, by continuity. Hence, we obtain a residual $\Gamma_{L}=G_{L} / H_{L}$-action on \widehat{L}_{∞}^{b}.

Now let us return to the Tate module T of the Lubin-Tate formal group law F_{ϕ}. The Frobenius power series property implies that

$$
\begin{equation*}
\iota: T \mapsto o_{\widehat{L}_{\infty}^{b}} \quad\left(y_{n}\right)_{n \geq 1} \mapsto\left(\ldots, y_{n} \quad \bmod \pi o_{\widehat{L}_{\infty}^{b}}, \ldots, y_{1} \quad \bmod \pi o_{\widehat{L}_{\infty}^{b}}, 0\right) \tag{7}
\end{equation*}
$$

is a well-defined map (but not a homomorphism). The image of the basis element gives $\omega:=\iota(t) \in o_{\widehat{L}_{\infty}^{b}}$. By the ramification theory of the Lubin-Tate extensions, it follows that $|\omega|_{b}=|\pi|^{q /(q-1)}<1$. Hence $X \mapsto \omega$ gives a ring map $k \llbracket X \rrbracket \rightarrow o_{\widehat{L}_{\infty}^{b}}$ which extends to $k((X)) \hookrightarrow \widehat{L}_{\infty}^{b}$. We define the field of norms $\mathbf{E}_{L} \cong k((X))$ to be the image of this map. This subfield and the map ι have the following properties:
(i) For any $\gamma \in \Gamma_{L}$ we have $\gamma(\omega)=\overline{\left[\chi_{L}(\gamma)\right]_{\phi}}(\omega)$. In particular (by continuity) it follows that the Γ_{L}-action on \widehat{L}_{∞}^{b} preserves \mathbf{E}_{L}.
(ii) $\widehat{\mathbf{E}_{L}^{\text {perf }}}=\widehat{L}_{\infty}^{b}$ and $\widehat{\mathbf{E}_{L}^{\text {sep }}}=\widehat{\mathbf{E}_{L}}=\mathbb{C}_{p}^{b}$; we say that $\widehat{\mathbf{E}_{L}^{\text {perf }}}$ (resp. $\mathbf{E}_{L}^{\text {sep }}$), is a decompletion of $\widehat{L}_{\infty}^{b}\left(\right.$ resp. $\left.\mathbb{C}_{p}^{b}\right)$.

In the preceding we introduced the perfect hull $\mathbf{E}_{L}^{\text {perf }}:=\left\{x \in \overline{\mathbf{E}}_{L}: x^{p^{m}} \in \mathbf{E}_{L}\right.$ for some $m \geq$ $0\}$. By general field theory and the above facts, we obtain isomorphisms by restriction

$$
\begin{equation*}
\operatorname{Aut}^{\mathrm{cts}}\left(\mathbb{C}_{p}^{b}, \widehat{L}_{\infty}^{b}\right) \xrightarrow{\sim} \operatorname{Gal}\left(\overline{\mathbf{E}}_{L} / \mathbf{E}_{L}^{\text {perf }}\right) \xrightarrow{\sim} \operatorname{Gal}\left(\mathbf{E}_{L}^{\mathrm{sep}} / \mathbf{E}_{L}\right)=: H_{\mathbf{E}_{L}} \tag{8}
\end{equation*}
$$

here the first is by continuity and the second is by property of the perfect hull. On the other hand we have by continuity an isomorphism

$$
\begin{equation*}
H_{L}=\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \widehat{L}_{\infty}\right) \stackrel{\sim}{\operatorname{Aut}}{ }^{\mathrm{cts}}\left(\mathbb{C}_{p}, \widehat{L}_{\infty}\right) \tag{9}
\end{equation*}
$$

and the untilting-tilting formalism gives a bijection

$$
\begin{equation*}
\mathrm{Aut}^{\mathrm{cts}}\left(\mathbb{C}_{p}, \widehat{L}_{\infty}\right) \rightarrow \operatorname{Aut}^{\mathrm{cts}}\left(\mathbb{C}_{p}^{b}, \widehat{L}_{\infty}^{b}\right), \quad \sigma \mapsto \sigma^{b}, \quad \sigma^{\sharp} \longleftarrow \sigma, \tag{10}
\end{equation*}
$$

which is in fact an isomorphism of topological groups (this is non-trivial to verify). The composite isomorphism $H_{L} \xrightarrow{\sim} H_{\mathbf{E}_{L}}$ is identified with $\sigma \mapsto \sigma^{\text {b }}$.

Example 3.2. In our running example with $L=\mathbb{Q}_{p}, \pi=p, F_{\phi}=\widehat{\mathbb{G}}_{m}$ one has $L_{\infty}=$ $\mathbb{Q}_{p}\left(\zeta_{p^{\infty}}\right)$. Fixing a compatible system $\left(\zeta_{p^{n}}\right)_{n}$, we obtain $\omega:=\left(\ldots, \zeta_{p^{2}}-1 \bmod p, \zeta_{p}-1\right.$ $\bmod p, 0) \in o_{\widehat{L}_{\infty}^{b}}$ and $\mathbb{F}_{p}((X)) \xrightarrow{\sim} \mathbf{E}_{\mathbb{Q}_{p}}$ via $X \mapsto \omega$. Then (ii) above tells us that this gives $\mathbb{F}_{p} \overline{((X))\left(X^{1 / p^{\infty}}\right)} \xrightarrow{\sim} \widehat{L}_{\infty}^{b}$. Restiction of the tilted action to $\mathbf{E}_{\mathbb{Q}_{p}}^{\text {sep }}$ gives an isomorphism $G_{\mathbb{Q}_{p}\left(\zeta_{p} \infty\right)} \cong G_{\mathbb{F}_{p}((X))}$.

4 The coefficient ring revisited

In the previous section we constructed an embedding $k((X)) \hookrightarrow \widehat{L}_{\infty}^{b}$ whose image was defined to be \mathbf{E}_{L}. We would now like to lift this to am algebra morphism \mathfrak{j} :

such that \mathfrak{j} is equivariant for the Γ_{L}-actions (the Γ_{L}-action on $W\left(\mathbf{E}_{L}\right)_{L}$ being induced by functoriality of the ramified Witt vector construction) and sends the action of φ_{L} to the Frobenius Fr on $W\left(\mathbf{E}_{L}\right)_{L}$. Here Φ_{0} is the $0^{\text {th }}$ ghost component map. In order to construct such a morphism we need to specify the image of $X \in \mathscr{A}_{L}$, in other words, we need to lift $\omega \in \mathbf{E}_{L}$ to an element $\omega_{\phi} \in W\left(\mathbf{E}_{L}\right)_{L}$. One would usually use the Teichmuller representative $\tau: \mathbf{E}_{L} \rightarrow W\left(\mathbf{E}_{L}\right)_{L}$ to achieve this, however, it doesn't have the right equivariance properties, and so it needs to be modified.

Let $\mathbb{M}_{\mathbf{E}_{L}}:=\Phi_{0}^{-1}\left(\mathfrak{m}_{\mathbf{E}_{L}}\right) \subseteq W\left(\mathbf{E}_{L}\right)_{L}$; this is a maximal ideal. Via the Lubin-Tate formal group law $F_{\phi}, \mathbb{M}_{\mathbf{E}_{L}}$ acquires the structure of an o-module. It turns out that $[\pi]_{\phi} \circ \mathrm{Fr}^{-1}$ is a well-defined o-module endomorphism of $\mathbb{M}_{\mathbf{E}_{L}}$. Ignoring questions of convergence we can define an o-module endomorphism

$$
\begin{equation*}
\{\cdot\}: \mathbb{M}_{\mathbf{E}_{L}} \rightarrow \mathbb{M}_{\mathbf{E}_{L}} \quad\{\alpha\}:=\lim _{i \rightarrow \infty}\left([\pi]_{\phi} \circ \operatorname{Fr}^{-1}\right)^{i}(\alpha) \tag{12}
\end{equation*}
$$

the definition of $\{\alpha\}$ is rigged so that $[\pi]_{\phi}(\{\alpha\})=\operatorname{Fr}(\{\alpha\})$. Hence, if one defines

$$
\begin{equation*}
\iota_{\phi}:=\text { the composite }\left(T \xrightarrow{\iota} \mathfrak{m}_{\mathbf{E}_{L}} \xrightarrow{\tau} \mathbb{M}_{\mathbf{E}_{L}} \xrightarrow{\{\cdot\}} \mathbb{M}_{\mathbf{E}_{L}}\right) \tag{13}
\end{equation*}
$$

then one can verify that $\operatorname{Fr}\left(\iota_{\phi}(t)\right)=\iota_{\phi}(\pi \cdot t)$. It turns out that $\Phi_{0} \iota_{\phi}=\iota$ and ι_{ϕ} also has the right Γ_{L}-equivariance.

Therefore we choose $\omega_{\phi}:=\iota_{\phi}(t)$ and the o-algebra map $\mathfrak{j}: \mathscr{A}_{L} \rightarrow W\left(\mathbf{E}_{L}\right)_{L}$ is detemined by $X \mapsto \omega_{\phi}$. This is Γ_{L}-equivariant and satisfies $\mathfrak{j} \circ \varphi_{L}=\mathrm{Fr} \circ \mathfrak{j}$. It follows that the image $\mathbf{A}_{L}:=\operatorname{im}(\mathfrak{j})$ is equipped with a $\left(\varphi_{L}, \Gamma_{L}\right)$-action, which coincides with that inherited from the $\left(\mathrm{Fr}, \Gamma_{L}\right)$ action on $W\left(\mathbf{E}_{L}\right)_{L}$. The map \mathfrak{j} also turns out to be a topological embedding for the respective weak topologies so that $\mathfrak{j}: \mathscr{A}_{L} \rightarrow \mathbf{A}_{L}$ is a topological isomorphism.

We now "redefine" the category of $\left(\varphi_{L}, \Gamma_{L}\right)$-modules by replacing instances of \mathscr{A}_{L} in the previous definition by \mathbf{A}_{L}.

5 The functors

By the previous we have constructed a $\left(\mathrm{Fr}, \Gamma_{L}\right)$-stable subalgebra $\mathbf{A}_{L} \subseteq W\left(\mathbf{E}_{L}\right)_{L}$, which is naturally contained in $W\left(\mathbf{E}_{L}^{\text {sep }}\right)_{L}$. We define \mathbf{B}_{L} to be the fraction field of \mathbf{A}_{L} : note that the residue field of \mathbf{B}_{L} is identified with \mathbf{E}_{L}. The next techical input (which we do not have time to prove) is the following:

Proposition 5.1. There is a unique intermediate ring

$$
\begin{equation*}
\mathbf{A}_{L} \subseteq \mathbf{A}_{L}^{\mathrm{nr}} \subseteq W\left(\mathbf{E}_{L}^{\mathrm{sep}}\right)_{L} \tag{14}
\end{equation*}
$$

such that:

- $\mathbf{A}_{L}^{\mathrm{nr}}$ is a complete DVR with uniformizer π;
- $\mathbf{B}_{L}^{\mathrm{nr}}:=\operatorname{Frac}\left(\mathbf{A}_{L}^{\mathrm{nr}}\right)$ is the unique subextension of $\operatorname{Frac}\left(W\left(\mathbf{E}_{L}^{\mathrm{sep}}\right)_{L}\right)$ which is a maximal unramified extension of \mathbf{E}_{L};
- $\Phi_{0}: \mathbf{A}_{L}^{\mathrm{nr}} / \pi \xrightarrow{\sim} \mathbf{E}_{L}^{\mathrm{sep}}$ is an isomorphism;
- $\mathbf{A}_{L}^{\mathrm{nr}}$ is preserved by the Frobenius Fr and the G_{L} action inherited from $W\left(\mathbf{E}_{L}^{\mathrm{sep}}\right)_{L}$ (the latter coming from tilting equivalence); also H_{L} fixes \mathbf{A}_{L}.

Finally we define

$$
\begin{equation*}
\mathbf{A}:=\text { closure of } \mathbf{A}_{L}^{\mathrm{nr}} \subseteq W\left(\mathbf{E}_{L}^{\text {sep }}\right)_{L} \text { w.r.t the } \pi-\text { adic topology. } \tag{15}
\end{equation*}
$$

Since the G_{L}-action on Witt vectors is "coefficientwise", we see that the G_{L}-action commutes with Fr and $\left(W\left(\mathbf{E}_{L}^{\text {sep }}\right)_{L}\right)^{\mathrm{Fr}=1}=W(k)_{L}=o$. In particular $\mathbf{A}^{\mathrm{Fr}=1}=o$. Hence, we can define, for $M \in \operatorname{Mod}^{\text {et }}\left(\mathbf{A}_{L}\right)$, the o-linear G_{L}-representation

$$
\begin{equation*}
\mathscr{V}(M):=\left(\mathbf{A} \otimes_{\mathbf{A}_{L}} M\right)^{\mathrm{Fr} \otimes \varphi_{M}=1} \tag{16}
\end{equation*}
$$

here G_{L} acts diagonally and through the residual $\Gamma_{L^{-}}$-action on M.
On the other hand, by the property of unramified extensions, the $G_{L^{-}}$-action on $W\left(\mathbf{E}_{L}^{\text {sep }}\right)_{L}$ gives natural isomorphisms

$$
\begin{equation*}
H_{L} \xrightarrow{\sim} \operatorname{Gal}\left(\mathbf{B}_{L}^{\mathrm{nr}} / \mathbf{B}_{L}\right) \xrightarrow{\sim} \operatorname{Gal}\left(\mathbf{E}_{L}^{\mathrm{sep}} / \mathbf{E}_{L}\right), \tag{17}
\end{equation*}
$$

so it is not so surprising (though, we do not prove it), that $\mathbf{A}^{H_{L}}=\mathbf{A}_{L}$. Given $V \in$ $\operatorname{Rep}_{o}\left(G_{L}\right)$, the \mathbf{A}-module $\mathbf{A} \otimes_{o} V$ acquires the diagonal G_{L}-action and the Fr-linear endomorphism $\varphi:=\mathrm{Fr} \otimes \mathrm{id}$. Thus the \mathbf{A}_{L}-module

$$
\begin{equation*}
\mathscr{D}(V):=\left(\mathbf{A} \otimes_{o} V\right)^{H_{L}} \tag{18}
\end{equation*}
$$

acquires a residual Γ_{L}-action and a commuting $\varphi_{\mathscr{D}(V)}:=\varphi \mid \mathscr{D}(V)$-action. The main theorem is

Theorem 5.2 (Fontaine, Kisin-Ren, Colmez, Schneider). The functors

$$
\begin{equation*}
\mathscr{V}: \operatorname{Mod}^{\mathrm{et}}\left(\mathbf{A}_{L}\right) \leftrightarrows \operatorname{Rep}_{o}\left(G_{L}\right): \mathscr{D} \tag{19}
\end{equation*}
$$

give an equivalence of categories.
Implicit in this is of course the fact that the functors are well-defined, i.e., $\mathscr{V}(M)$ and $\mathscr{D}(V)$ are finitely generated, the actions are continuous and $\mathscr{D}(V)$ is "étale". We give a sketch of the proof in the case of π-torsion coefficients, i.e., the equivalence

$$
\begin{equation*}
\mathscr{V}: \operatorname{Mod}^{\mathrm{et}}\left(\mathbf{E}_{L}\right) \leftrightarrows \operatorname{Rep}_{k}\left(G_{L}\right): \mathscr{D} \tag{20}
\end{equation*}
$$

given by $\mathscr{V}(M):=\left(\mathbf{E}_{L}^{\text {sep }} \otimes_{\mathbf{E}_{L}} M\right)^{\varphi=1}$ and $\mathscr{D}(V):=\left(\mathbf{E}_{L}^{\text {sep }} \otimes_{k} V\right)^{H_{L}}$. For the general case one can use a dévissage argument to bootstrap this to π^{m}-torsion coefficients and then take limits.

By an argument involving Hilbert 90 the $\mathbf{E}_{L}^{\text {sep }}$-vector space $\mathbf{E}_{L}^{\text {sep }} \otimes_{k} V$ has a basis by H_{L}-fixed vectors. Using this basis it is easily verified that $\mathscr{D}(V)$ is finitely generated and the natural morphism

$$
\begin{equation*}
\mathbf{E}_{L}^{\mathrm{sep}} \otimes_{\mathbf{E}_{L}} \mathscr{D}(V) \xrightarrow{\sim} \mathbf{E}_{L}^{\mathrm{sep}} \otimes_{k} V \tag{21}
\end{equation*}
$$

is an isomorphism (one says that V is admissible). Hence using (21) we calculate

$$
\begin{equation*}
\mathscr{V}(\mathscr{D}(V))=\left(\mathbf{E}_{L} \otimes_{\mathbf{E}_{L}} \mathscr{D}(V)\right)^{\varphi=1} \xrightarrow{\sim}\left(\mathbf{E}_{L}^{\mathrm{sep}} \otimes_{k} V\right)^{\varphi=1}=\left(\mathbf{E}_{L}^{\mathrm{sep}}\right)^{\mathrm{Fr}=1} \otimes_{k} V=V . \tag{22}
\end{equation*}
$$

On the other hand, for $M \in \operatorname{Mod}^{\text {et }}\left(\mathbf{E}_{L}\right)$ it is a consequence of Galois/étale descent (here is where we use that $\varphi_{M}^{\operatorname{lin}}$ is an isomorphism), that

$$
\begin{equation*}
\operatorname{dim}_{k} \mathscr{V}(M)^{\varphi=1}=\operatorname{dim}_{\mathbf{E}_{L}^{\operatorname{sep}}} \mathbf{E}_{L}^{\operatorname{sep}} \otimes_{\mathbf{E}_{L}} M=\operatorname{dim}_{\mathbf{E}_{L}} M \tag{23}
\end{equation*}
$$

and the natural map

$$
\begin{equation*}
\mathbf{E}_{L}^{\text {sep }} \otimes_{k} \mathscr{V}(M) \xrightarrow{\sim} \mathbf{E}_{L}^{\text {sep }} \otimes_{\mathbf{E}_{L}} M, \tag{24}
\end{equation*}
$$

is an isomorphism. Hence using (24) we calculate

$$
\begin{equation*}
\mathscr{D}(\mathscr{V}(M))=\left(\mathbf{E}_{L}^{\mathrm{sep}} \otimes_{k} \mathscr{V}(M)\right)^{H_{L}} \xrightarrow[\rightarrow]{\sim}\left(\mathbf{E}_{L}^{\mathrm{sep}} \otimes_{\mathbf{E}_{L}} M\right)^{H_{L}}=\left(\mathbf{E}_{L}^{\mathrm{sep}}\right)^{H_{L}} \otimes_{\mathbf{E}_{L}} M=M . \tag{25}
\end{equation*}
$$

which completes our proof sketch.

References

[Sch17] Peter Schneider. Galois representations and (φ, Γ)-modules. Vol. 164. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2017, pp. vii+148. ISBN: 978-1-107-18858-7. DOI: 10.1017/9781316981252. URL: https://doi.org/10.1017/9781316981252.

[^0]: ${ }^{1}$ Setting $Y=\operatorname{Spec}\left(\mathscr{A}_{L}\right)$, we can informally think of this condition as some kind of φ_{L}-equivariance or descent datum.
 ${ }^{2}$ The multiplicativity of this map is immediate, and the additivity follows from the formulas:

 $$
 \begin{aligned}
 \left|(\alpha+\beta)^{\sharp}\right| & =\left|\lim _{i \rightarrow \infty}\left(a_{i}+b_{i}\right)^{q^{i}}\right|=\left.\lim _{i \rightarrow \infty}\left|a_{i}+b_{i}\right|\right|^{q^{i}} \leq \lim _{i \rightarrow \infty} \max \left(\left|a_{i}\right|,\left|b_{i}\right|\right)^{q^{i}} \\
 & =\max \left(\lim _{i \rightarrow \infty}\left|a_{i}\right|^{q^{i}}, \lim _{i \rightarrow \infty}\left|b_{i}\right|^{q^{i}}\right)=\max \left(\left|\alpha^{\sharp}\right|,\left|\beta^{\sharp}\right|\right) .
 \end{aligned}
 $$

