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Almost everything below is lifted from [Sch17] so please see there for all the details.
All typos and mistakes below are my own. As a disclaimer: I make no claim to understand
p-adic Hodge theory.

1 Introduction

One of the goals of number theory is to understand the absolute Galois group of a number
field. Since this is extremely difficult we attempt to simplify the problem by working “one
place at a time”. Let L/Qp be a finite extension with ring of integers o and residue field
k. By local class field theory we have the local Artin map

rec : L× → Gab
L (1)

characterised by the property that “every uniformizer of L acts by the Frobenius”, and
for every finite abelian extension L′/L, rec induces an isomorphism L×/NormL′/L(L

′)
∼−→

Gal(L′/L). In fact rec induces an isomorphism from the profinite completion

rec : ”L× ∼−→ Gab
L . (2)

In other words we have a near total understanding of the “1-dimensional” representations
of GL. We would like to understand Repo(GL) := the category of finitely generated o-
modules equipped with a continuous GL-action. The paradigm of (φL,ΓL)-modules is to
understand this category by replacing the Galois action by a simpler group at the expense
of introducing a much larger coefficient ring.

2 Definition of (φL,ΓL)-modules

Let π ∈ L be a uniformizer and set

AL := lim←−
m

o((X))/πm =

{∑
i∈Z

aiX
i : ai

i→−∞−−−−→ 0

}
. (3)

equipped with the Gauss norm/valuation this is a DVR with residue field k((X)). The
ring AL can be viewed naturally as a subset of oZ and hence acquires a second topology
(besides the valuation topology), which is called the weak topology since it is the topology
of coefficientwise convergence.

A Frobenius power series is an ϕ(X) ∈ o[[X]] such that ϕ(X) = Xq mod π and ϕ(X) =
πX mod X2. The choice of ϕ yields a Lubin-Tate formal group law (depending only on
π up to isomorphism), Fϕ(X,Y ) ∈ o[[X,Y ]] such that ϕ ∈ End(Fϕ). Moreover there is an
injective ring homomorphism [·]ϕ : o→ End(Fϕ) such that [π]ϕ = ϕ. This gives an action
of the monoid o \ {0} on AL by a.f(X) := f([a]ϕ(X)). Since o \ {0} = πN0o× this can be
viewed as an action by ΓL := o× and the endomorphism φL sending f(X) 7→ f([π]ϕ(X)).
These actions are both continuous for the (weak) topology.
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Example 2.1. When L = Qp one takes π = p, φ = (1 + X)p − 1, then Fϕ(X,Y ) =
(X + 1)(Y + 1)− 1 is the multplicative law and [a]ϕ = (1 +X)a − 1 for a ∈ Zp.

Any finitely generated AL-module M acquires a canonical topology which is the quo-
tient topology of the weak topology along any surjection A ⊕n

L → M . The category of
(φL,ΓL)-modules is the category of finitely generated AL-modules M equipped with a
semilinear continuous action of ΓL and a commuting φL-linear continuous endomorphism
φM : M →M . A (φL,ΓL)-module M is called étale if the map φlin

M : AL⊗AL,φL
M →M

sending f ⊗m 7→ fφM (m), is an isomorphism1. We will sketch the construction of the
explicit equivalence

Repo(GL) ∼= Modet(AL) := {category of étale (φL,ΓL)−modules}. (4)

3 A generalisation of the Fontaine-Winterberger theorem

Fix an algebraic closure L of L inside Cp. Let M ⊂ oL be the maximal ideal and, for each
n ≥ 1 set Fn := ker([πn]ϕ)(M) and Ln := L(Fn). Set T := lim←−n

Fn and L∞
⋃

n Ln. Of

course, Gal(Ln/L) acts on Fn. In fact Fn turns out to be a free rank 1 o/πno-module
and hence T is free of rank 1 as an o-module. Hence, the choice a basis element t ∈ T
(i.e., a compatible system of torsion points), induces the Lubin-Tate character

χL : Gal(L∞/L) −→ o× = ΓL, (5)

which turns out to be an isomorphism. The extensions Ln/L are totally ramified, in
particular, L∞ has residue field k.

Example 3.1. In our running example with L = Qp, π = p and Fϕ = “Gm we obtain
Fn = {ζ − 1 : ζp

n

= 1} and Ln = Qp(ζpn), and χL is the cyclotomic character.

Recall that an intermediate field L ⊂ K ⊂ Cp is called perfectoid if it is com-
plete, indiscretely valued and (oK/poK)p = oK/poK . Given such a field we set oK♭ :=
lim←−x 7→xq

oK/πoK . This is a perfect k-algebra. Given a compatible system (αi)i ∈ oK♭ we

can choose arbitary lifts ai of αi to oK and set α♯ := limi→∞ aq
i

i to obtain a well-defined
element α♯ ∈ oK . This map allows us to define a norm2 | · |K♭ on oK♭ by |α|K♭ := |α♯|K .
With respect to the norm | · |K♭ , oK♭ has the same valuation monoid as oK . The maximal
ideal of oK♭ is given in terms of | · |K♭ in the usual way and it turns out that the residue
fields of oK and oK♭ are canonically isomorphic. The fraction field K♭ of oK♭ together
with | · |K♭ is then a perfect nonarchimedean field of characteristic p.

We have two examples of perfectoid fields, namely L̂∞ and Cp. The natural map

oL∞/π → oCp
/π is injective and hence L̂∞ ↪→ C♭

p naturally. The “tilting correspondence”

due to Scholze says that K 7→ K♭ gives an inclusion-respecting bijection

{perfectoid fields L̂∞ ⊂ K ⊂ Cp} ↔ {complete and perfect fields L̂♭
∞ ⊂ F ⊂ C♭

p} (6)

1Setting Y = Spec(AL), we can informally think of this condition as some kind of φL-equivariance or
descent datum.

2The multiplicativity of this map is immediate, and the additivity follows from the formulas:

|(α+ β)♯| = | lim
i→∞

(ai + bi)
qi | = lim

i→∞
|ai + bi|q

i
≤ lim

i→∞
max(|ai|, |bi|)q

i

= max(limi→∞ |ai|q
i
, limi→∞ |bi|q

i
) = max(|α♯|, |β♯|).
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whose inverse is given by untilting F 7→ F ♯ (we do not have time to discuss this).
The group GL acts naturally on oC♭

p
by σ ·(. . . , ai modπ, . . . ) = (. . . , σ(ai)modπ, . . . ).

This preserves the norm | · |C♭
p
and in fact induces a continuous action of GL on C♭

p. The

action of HL := Gal(Qp/L∞) ⊆ GL fixes L̂∞ ⊆ Cp and L̂♭
∞ ⊆ C♭

p, by continuity. Hence,

we obtain a residual ΓL = GL/HL-action on L̂♭
∞.

Now let us return to the Tate module T of the Lubin-Tate formal group law Fϕ. The
Frobenius power series property implies that

ι : T 7→ o“L♭
∞

(yn)n≥1 7→ (. . . , yn mod πo“L♭
∞
, . . . , y1 mod πo“L♭

∞
, 0), (7)

is a well-defined map (but not a homomorphism). The image of the basis element gives
ω := ι(t) ∈ o“L♭

∞
. By the ramification theory of the Lubin-Tate extensions, it follows that

|ω|♭ = |π|q/(q−1) < 1. Hence X 7→ ω gives a ring map k[[X]] → o“L♭
∞

which extends to

k((X)) ↪→ L̂♭
∞. We define the field of norms EL

∼= k((X)) to be the image of this map.
This subfield and the map ι have the following properties:

(i) For any γ ∈ ΓL we have γ(ω) = [χL(γ)]ϕ(ω). In particular (by continuity) it follows

that the ΓL-action on L̂♭
∞ preserves EL.

(ii)
’
Eperf

L = L̂♭
∞ and ‘Esep

L = ”EL = C♭
p; we say that

’
Eperf

L (resp. Esep
L ), is a decompletion

of L̂♭
∞ (resp. C♭

p).

In the preceding we introduced the perfect hull Eperf
L := {x ∈ EL : xpm ∈ EL for some m ≥

0}. By general field theory and the above facts, we obtain isomorphisms by restriction

Autcts(C♭
p, L̂

♭
∞)

∼−→ Gal(EL/E
perf
L )

∼−→ Gal(Esep
L /EL) =: HEL

; (8)

here the first is by continuity and the second is by property of the perfect hull. On the
other hand we have by continuity an isomorphism

HL = Gal(Qp/L̂∞)
∼←− Autcts(Cp, L̂∞), (9)

and the untilting-tilting formalism gives a bijection

Autcts(Cp, L̂∞)→ Autcts(C♭
p, L̂

♭
∞), σ 7→ σ♭, σ♯ 7→σ, (10)

which is in fact an isomorphism of topological groups (this is non-trivial to verify). The
composite isomorphism HL

∼−→ HEL
is identified with σ 7→ σ♭.

Example 3.2. In our running example with L = Qp, π = p, Fϕ = “Gm one has L∞ =
Qp(ζp∞). Fixing a compatible system (ζpn)n, we obtain ω := (. . . , ζp2 − 1 mod p, ζp − 1

mod p, 0) ∈ o“L♭
∞

and Fp((X))
∼−→ EQp

via X 7→ ω. Then (ii) above tells us that this gives¤�Fp((X))(X1/p∞)
∼−→ L̂♭

∞. Restiction of the tilted action to Esep
Qp

gives an isomorphism
GQp(ζp∞ )

∼= GFp((X)).
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4 The coefficient ring revisited

In the previous section we constructed an embedding k((X)) ↪→ L̂♭
∞ whose image was

defined to be EL. We would now like to lift this to am algebra morphism j:

AL W (EL)L

k((X)) EL

j

mod π

∼

Φ0
(11)

such that j is equivariant for the ΓL-actions (the ΓL-action on W (EL)L being induced
by functoriality of the ramified Witt vector construction) and sends the action of φL to
the Frobenius Fr on W (EL)L. Here Φ0 is the 0th ghost component map. In order to
construct such a morphism we need to specify the image of X ∈ AL, in other words, we
need to lift ω ∈ EL to an element ωϕ ∈W (EL)L. One would usually use the Teichmuller
representative τ : EL → W (EL)L to achieve this, however, it doesn’t have the right
equivariance properties, and so it needs to be modified.

Let MEL
:= Φ−1

0 (mEL
) ⊆W (EL)L; this is a maximal ideal. Via the Lubin-Tate formal

group law Fϕ, MEL
acquires the structure of an o-module. It turns out that [π]ϕ ◦ Fr−1

is a well-defined o-module endomorphism of MEL
. Ignoring questions of convergence we

can define an o-module endomorphism

{·} : MEL
→MEL

{α} := lim
i→∞

([π]ϕ ◦ Fr−1)i(α), (12)

the definition of {α} is rigged so that [π]ϕ({α}) = Fr({α}). Hence, if one defines

ιϕ := the composite (T
ι−→ mEL

τ−→MEL

{·}−−→MEL
) (13)

then one can verify that Fr(ιϕ(t)) = ιϕ(π · t). It turns out that Φ0ιϕ = ι and ιϕ also has
the right ΓL-equivariance.

Therefore we choose ωϕ := ιϕ(t) and the o-algebra map j : AL →W (EL)L is detemined
by X 7→ ωϕ. This is ΓL-equivariant and satisfies j ◦ φL = Fr ◦j. It follows that the image
AL := im(j) is equipped with a (φL,ΓL)-action, which coincides with that inherited from
the (Fr,ΓL) action on W (EL)L. The map j also turns out to be a topological embedding
for the respective weak topologies so that j : AL → AL is a topological isomorphism.

We now “redefine” the category of (φL,ΓL)-modules by replacing instances of AL in
the previous definition by AL.

5 The functors

By the previous we have constructed a (Fr,ΓL)-stable subalgebra AL ⊆ W (EL)L, which
is naturally contained in W (Esep

L )L. We define BL to be the fraction field of AL : note
that the residue field of BL is identified with EL. The next techical input (which we do
not have time to prove) is the following:

Proposition 5.1. There is a unique intermediate ring

AL ⊆ Anr
L ⊆W (Esep

L )L (14)

such that:

4



Arun Soor

• Anr
L is a complete DVR with uniformizer π;

• Bnr
L := Frac(Anr

L ) is the unique subextension of Frac(W (Esep
L )L) which is a maximal

unramified extension of EL;

• Φ0 : Anr
L /π

∼−→ Esep
L is an isomorphism;

• Anr
L is preserved by the Frobenius Fr and the GL action inherited from W (Esep

L )L
(the latter coming from tilting equivalence); also HL fixes AL.

Finally we define

A := closure of Anr
L ⊆W (Esep

L )L w.r.t the π − adic topology. (15)

Since the GL-action on Witt vectors is “coefficientwise”, we see that the GL-action com-
mutes with Fr and (W (Esep

L )L)
Fr=1 = W (k)L = o. In particular AFr=1 = o. Hence, we

can define, for M ∈ Modet(AL), the o-linear GL-representation

V (M) := (A⊗AL
M)Fr⊗φM=1, (16)

here GL acts diagonally and through the residual ΓL-action on M .
On the other hand, by the property of unramified extensions, the GL-action on

W (Esep
L )L gives natural isomorphisms

HL
∼−→ Gal(Bnr

L /BL)
∼−→ Gal(Esep

L /EL), (17)

so it is not so surprising (though, we do not prove it), that AHL = AL. Given V ∈
Repo(GL), the A-module A ⊗o V acquires the diagonal GL-action and the Fr-linear en-
domorphism φ := Fr⊗ id. Thus the AL-module

D(V ) := (A⊗o V )HL (18)

acquires a residual ΓL-action and a commuting φD(V ) := φ|D(V )-action. The main
theorem is

Theorem 5.2 (Fontaine, Kisin-Ren, Colmez, Schneider). The functors

V : Modet(AL) ⇆ Repo(GL) : D , (19)

give an equivalence of categories.

Implicit in this is of course the fact that the functors are well-defined, i.e., V (M) and
D(V ) are finitely generated, the actions are continuous and D(V ) is “étale”. We give a
sketch of the proof in the case of π-torsion coefficients, i.e., the equivalence

V : Modet(EL) ⇆ Repk(GL) : D , (20)

given by V (M) := (Esep
L ⊗EL

M)φ=1 and D(V ) := (Esep
L ⊗k V )HL . For the general case

one can use a dévissage argument to bootstrap this to πm-torsion coefficients and then
take limits.

By an argument involving Hilbert 90 the Esep
L -vector space Esep

L ⊗k V has a basis by
HL-fixed vectors. Using this basis it is easily verified that D(V ) is finitely generated and
the natural morphism

Esep
L ⊗EL

D(V )
∼−→ Esep

L ⊗k V (21)
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is an isomorphism (one says that V is admissible). Hence using (21) we calculate

V (D(V )) = (EL ⊗EL
D(V ))φ=1 ∼−→ (Esep

L ⊗k V )φ=1 = (Esep
L )Fr=1 ⊗k V = V. (22)

On the other hand, for M ∈ Modet(EL) it is a consequence of Galois/étale descent (here
is where we use that φlin

M is an isomorphism), that

dimk V (M)φ=1 = dimEsep
L

Esep
L ⊗EL

M = dimEL
M (23)

and the natural map
Esep

L ⊗k V (M)
∼−→ Esep

L ⊗EL
M, (24)

is an isomorphism. Hence using (24) we calculate

D(V (M)) = (Esep
L ⊗k V (M))HL

∼−→ (Esep
L ⊗EL

M)HL = (Esep
L )HL ⊗EL

M = M. (25)

which completes our proof sketch.
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